求大神说说为什么数字传输一定要对数据进行编码?

2024-05-14

1. 求大神说说为什么数字传输一定要对数据进行编码?

数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。 
提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。

求大神说说为什么数字传输一定要对数据进行编码?

2. 数字数据在数字信道传输时为什么要进行编码?有几种编码方法?

在一般情况下,用振幅恒定载波的存在与否来表示两个二进制字。ASK方式的编码效率较低,容易受增益变化的影响,抗干扰性较差。在音频电话线路上,一般只能达到 1 200 b/s的传输速率。(2) 频移键控(FSK)法:FSK(Frequency Shift Keying)是使用载波频率附近的两个不同频率来表示两个二进制值。FSK比ASK的编码效率高,不易受干扰的影响,抗干扰性较强。在音频电话线路上的传输速率可以大于1 200 b/s。(3) 相移键控(PSK)法:PSK(Phase Shift Keying)是使用载波信号的相位移动来表示二进制数据。在PSK方式中,信号相位与前面信号序列同相位的信号表示 0,信号相位与前面信号序列反相位的信号表示 1。PSK方式也可以用于多相的调制,例如在四相调制中可把每个信号序列编码为两位。PSK方式具有很强的抗干扰能力,其编码效率比FSK还要高。在音频线路上,传输速率可达 9 600 b/s。
2. 数字数据的数字信号编码
常用的数字信号编码有不归零 NRZ (Non Return to Zero)码、差分不归零DNRZ 码、曼彻斯特(Manchester)码及差分曼彻斯特(Differential Manchester)码等。
1) NRZ码NRZ码是用信号的幅度来表示二进制数据的,通常用正电压表示数据“1”,用负电压表示数据“0”,并且在表示一个码元时,电压均无需回到零,故称不归零码。NRZ码的特点是一种全宽码,即一位码元占一个单位脉冲的宽度。全宽码的优点:一是每个脉冲宽度越大,发送信号的能量就越大这对于提高接收端的信噪比有利;二是脉冲时间宽度与传输带宽成反比关系,即全宽码在信道上占用较窄的频带,并且在频谱中包含了码位的速度。
NRZ码的主要缺点是:当数据流中连续出现0 或1时,接收端很难以分辨1个信号位的开始或结束,必须采用某种方法在发送端和接收端之间提供必要的信号定时同步。同时,这种编码还会产生直流分量的积累问题,这将导致信号的失真与畸变,使传输的可靠性降低,并且由于直流分量的存在,使得无法使用一些交流耦合的线路和设备。因此,一般的数据传输系统都不采用这种编码方式。
(2) DNRZ码DNRZ码是一种NRZ码的改进形式,它是用信号的相位变化来表示二进制数据的,一个信号位的起始处有跳变表示数据“1”,而无跳变表示数据“0”。DNRZ码不仅保持了全宽码的优点,同时提高了信号的抗干扰性和易同步性。
近年来,越来越多的高速网络系统采用了DNRZ码,成为主流的信号编码技术,在FDDI、100BASE-T及100VG-AnyLAN等高速网络中都采用了DNRZ编码。其原因是在高速网络中要求尽量降低信号的传输带宽,以利于提高传输的可靠性和降低对传输介质带宽的要求。而DNRZ编码中的码元速率与编码时钟速率相一致,具有很高的编码效率,符合高速网络对信号编码的要求。同时,为了解决数据流中连续出现0 或1时所带来的信号编码问题,通常采用两级编码方案,第一级是预编码器,对数据流进行预编码,使编码后的数据流不会出现连续 0 或连续 1,常用的预编码方法有4B5B、5B6B等;第二级是DNRZ编码,实现物理信号的传输。这种两级编码方案的编码效率可达到 80%以上。例如,在4B5B编码中,每4位数据用5位编码来表示,即4位数据就会增加 1 位的编码开销,编码效率仍为80%。
(3) 曼彻斯特码
在曼彻斯特码中,用一个信号码元中间电压跳变的相位不同来区分数据“1”和“0”,它用正的电压跳变表示“0”;用负的电压跳变表示“1”。因此,这种编码也是一种相位码。由于电压跳变都发生在每一个码元的中间,接收端可以方便地利用它作为位同步时钟,因此这种编码也称为自同步码。
10Mb/s 以太网(Ethernet)采用这种曼彻斯特码。
(4) 差分曼彻斯特码
差分曼彻斯特码是一种曼彻斯特码的改进形式,其差别在于:每个码元的中间跳变只作为同步时钟信号;而数据“0”和“1”的取值是用信号位的起始处有无跳变来表示,若有跳变则为“0”;若无跳变则为“1”。这种编码的特点是每一位均用不同电平的两个半位来表示,因而始终能保持直流的平衡。这种编码也是一种自同步编码。
令牌环(Token-Ring)网采用这种差分曼彻斯特编码。
这两种曼彻斯特编码主要用于中速网络(Ethernet为 10 Mb/s;Token-Ring最高为16 Mb/s)中,而高速网络并不采用曼彻斯特编码技术。其原因是它的信号速率为数据速率的两倍,即对于 10 Mb/s的数据速率,则编码后的信号速率为 20 Mb/s,编码的有效率为 50%。对于 100 Mb/s的高速网络来说,200 Mb/s的信号速率无论对传输介质的带宽的要求,还是对传输可靠性的控制都未免太高了,将会增加信号传输技术的复杂性和实现成本,难以推广应用。

3. 数字数据在数字信道传输时为什么要进行编码?有几种编码方法?

编码为了为了信号同步和抗干扰,具体编码方法分为数字数据的模拟信号编码和数字数据的数字信号编码,数字数据的模拟信号编码包括幅移键控(ASK)法,ASK(Amplitude Shift Keying)是使用载波频率的两个不同振幅来表示两个二进制值。在一般情况下,用振幅恒定载波的存在与否来表示两个二进制字。ASK方式的编码效率较低,容易受增益变化的影响,抗干扰性较差。在音频电话线路上,一般只能达到 1 200 b/s的传输速率。(2) 频移键控(FSK)法:FSK(Frequency Shift Keying)是使用载波频率附近的两个不同频率来表示两个二进制值。FSK比ASK的编码效率高,不易受干扰的影响,抗干扰性较强。在音频电话线路上的传输速率可以大于1 200 b/s。(3) 相移键控(PSK)法:PSK(Phase Shift Keying)是使用载波信号的相位移动来表示二进制数据。在PSK方式中,信号相位与前面信号序列同相位的信号表示 0,信号相位与前面信号序列反相位的信号表示 1。PSK方式也可以用于多相的调制,例如在四相调制中可把每个信号序列编码为两位。PSK方式具有很强的抗干扰能力,其编码效率比FSK还要高。在音频线路上,传输速率可达 9 600 b/s。
2. 数字数据的数字信号编码
常用的数字信号编码有不归零 NRZ (Non Return to Zero)码、差分不归零DNRZ 码、曼彻斯特(Manchester)码及差分曼彻斯特(Differential Manchester)码等。
1) NRZ码NRZ码是用信号的幅度来表示二进制数据的,通常用正电压表示数据“1”,用负电压表示数据“0”,并且在表示一个码元时,电压均无需回到零,故称不归零码。NRZ码的特点是一种全宽码,即一位码元占一个单位脉冲的宽度。全宽码的优点:一是每个脉冲宽度越大,发送信号的能量就越大这对于提高接收端的信噪比有利;二是脉冲时间宽度与传输带宽成反比关系,即全宽码在信道上占用较窄的频带,并且在频谱中包含了码位的速度。
NRZ码的主要缺点是:当数据流中连续出现0 或1时,接收端很难以分辨1个信号位的开始或结束,必须采用某种方法在发送端和接收端之间提供必要的信号定时同步。同时,这种编码还会产生直流分量的积累问题,这将导致信号的失真与畸变,使传输的可靠性降低,并且由于直流分量的存在,使得无法使用一些交流耦合的线路和设备。因此,一般的数据传输系统都不采用这种编码方式。
(2) DNRZ码DNRZ码是一种NRZ码的改进形式,它是用信号的相位变化来表示二进制数据的,一个信号位的起始处有跳变表示数据“1”,而无跳变表示数据“0”。DNRZ码不仅保持了全宽码的优点,同时提高了信号的抗干扰性和易同步性。
近年来,越来越多的高速网络系统采用了DNRZ码,成为主流的信号编码技术,在FDDI、100BASE-T及100VG-AnyLAN等高速网络中都采用了DNRZ编码。其原因是在高速网络中要求尽量降低信号的传输带宽,以利于提高传输的可靠性和降低对传输介质带宽的要求。而DNRZ编码中的码元速率与编码时钟速率相一致,具有很高的编码效率,符合高速网络对信号编码的要求。同时,为了解决数据流中连续出现0 或1时所带来的信号编码问题,通常采用两级编码方案,第一级是预编码器,对数据流进行预编码,使编码后的数据流不会出现连续 0 或连续 1,常用的预编码方法有4B5B、5B6B等;第二级是DNRZ编码,实现物理信号的传输。这种两级编码方案的编码效率可达到 80%以上。例如,在4B5B编码中,每4位数据用5位编码来表示,即4位数据就会增加 1 位的编码开销,编码效率仍为80%。
(3) 曼彻斯特码
在曼彻斯特码中,用一个信号码元中间电压跳变的相位不同来区分数据“1”和“0”,它用正的电压跳变表示“0”;用负的电压跳变表示“1”。因此,这种编码也是一种相位码。由于电压跳变都发生在每一个码元的中间,接收端可以方便地利用它作为位同步时钟,因此这种编码也称为自同步码。
10Mb/s 以太网(Ethernet)采用这种曼彻斯特码。
(4) 差分曼彻斯特码
差分曼彻斯特码是一种曼彻斯特码的改进形式,其差别在于:每个码元的中间跳变只作为同步时钟信号;而数据“0”和“1”的取值是用信号位的起始处有无跳变来表示,若有跳变则为“0”;若无跳变则为“1”。这种编码的特点是每一位均用不同电平的两个半位来表示,因而始终能保持直流的平衡。这种编码也是一种自同步编码。
令牌环(Token-Ring)网采用这种差分曼彻斯特编码。
这两种曼彻斯特编码主要用于中速网络(Ethernet为 10 Mb/s;Token-Ring最高为16 Mb/s)中,而高速网络并不采用曼彻斯特编码技术。其原因是它的信号速率为数据速率的两倍,即对于 10 Mb/s的数据速率,则编码后的信号速率为 20 Mb/s,编码的有效率为 50%。对于 100 Mb/s的高速网络来说,200 Mb/s的信号速率无论对传输介质的带宽的要求,还是对传输可靠性的控制都未免太高了,将会增加信号传输技术的复杂性和实现成本,难以推广应用。因此,高速网络主要采用两级的DNRZ编码方案,而中速网络采用曼彻斯特编码方案,尽管它增加了传输所需的带宽,但在实现起来简单易行。

数字数据在数字信道传输时为什么要进行编码?有几种编码方法?

4. 数字数据在数字信道传输时为什么要进行编码?有几种编码方法?

在一般情况下,用振幅恒定载波的存在与否来表示两个二进制字。ASK方式的编码效率较低,容易受增益变化的影响,抗干扰性较差。在音频电话线路上,一般只能达到 1 200 b/s的传输速率。(2) 频移键控(FSK)法:FSK(Frequency Shift Keying)是使用载波频率附近的两个不同频率来表示两个二进制值。FSK比ASK的编码效率高,不易受干扰的影响,抗干扰性较强。在音频电话线路上的传输速率可以大于1 200 b/s。(3) 相移键控(PSK)法:PSK(Phase Shift Keying)是使用载波信号的相位移动来表示二进制数据。在PSK方式中,信号相位与前面信号序列同相位的信号表示 0,信号相位与前面信号序列反相位的信号表示 1。PSK方式也可以用于多相的调制,例如在四相调制中可把每个信号序列编码为两位。PSK方式具有很强的抗干扰能力,其编码效率比FSK还要高。在音频线路上,传输速率可达 9 600 b/s。
2. 数字数据的数字信号编码
常用的数字信号编码有不归零 NRZ (Non Return to Zero)码、差分不归零DNRZ 码、曼彻斯特(Manchester)码及差分曼彻斯特(Differential Manchester)码等。
1) NRZ码NRZ码是用信号的幅度来表示二进制数据的,通常用正电压表示数据“1”,用负电压表示数据“0”,并且在表示一个码元时,电压均无需回到零,故称不归零码。NRZ码的特点是一种全宽码,即一位码元占一个单位脉冲的宽度。全宽码的优点:一是每个脉冲宽度越大,发送信号的能量就越大这对于提高接收端的信噪比有利;二是脉冲时间宽度与传输带宽成反比关系,即全宽码在信道上占用较窄的频带,并且在频谱中包含了码位的速度。
NRZ码的主要缺点是:当数据流中连续出现0 或1时,接收端很难以分辨1个信号位的开始或结束,必须采用某种方法在发送端和接收端之间提供必要的信号定时同步。同时,这种编码还会产生直流分量的积累问题,这将导致信号的失真与畸变,使传输的可靠性降低,并且由于直流分量的存在,使得无法使用一些交流耦合的线路和设备。因此,一般的数据传输系统都不采用这种编码方式。
(2) DNRZ码DNRZ码是一种NRZ码的改进形式,它是用信号的相位变化来表示二进制数据的,一个信号位的起始处有跳变表示数据“1”,而无跳变表示数据“0”。DNRZ码不仅保持了全宽码的优点,同时提高了信号的抗干扰性和易同步性。
近年来,越来越多的高速网络系统采用了DNRZ码,成为主流的信号编码技术,在FDDI、100BASE-T及100VG-AnyLAN等高速网络中都采用了DNRZ编码。其原因是在高速网络中要求尽量降低信号的传输带宽,以利于提高传输的可靠性和降低对传输介质带宽的要求。而DNRZ编码中的码元速率与编码时钟速率相一致,具有很高的编码效率,符合高速网络对信号编码的要求。同时,为了解决数据流中连续出现0 或1时所带来的信号编码问题,通常采用两级编码方案,第一级是预编码器,对数据流进行预编码,使编码后的数据流不会出现连续 0 或连续 1,常用的预编码方法有4B5B、5B6B等;第二级是DNRZ编码,实现物理信号的传输。这种两级编码方案的编码效率可达到 80%以上。例如,在4B5B编码中,每4位数据用5位编码来表示,即4位数据就会增加 1 位的编码开销,编码效率仍为80%。
(3) 曼彻斯特码
在曼彻斯特码中,用一个信号码元中间电压跳变的相位不同来区分数据“1”和“0”,它用正的电压跳变表示“0”;用负的电压跳变表示“1”。因此,这种编码也是一种相位码。由于电压跳变都发生在每一个码元的中间,接收端可以方便地利用它作为位同步时钟,因此这种编码也称为自同步码。
10Mb/s 以太网(Ethernet)采用这种曼彻斯特码。
(4) 差分曼彻斯特码
差分曼彻斯特码是一种曼彻斯特码的改进形式,其差别在于:每个码元的中间跳变只作为同步时钟信号;而数据“0”和“1”的取值是用信号位的起始处有无跳变来表示,若有跳变则为“0”;若无跳变则为“1”。这种编码的特点是每一位均用不同电平的两个半位来表示,因而始终能保持直流的平衡。这种编码也是一种自同步编码。
令牌环(Token-Ring)网采用这种差分曼彻斯特编码。
这两种曼彻斯特编码主要用于中速网络(Ethernet为 10 Mb/s;Token-Ring最高为16 Mb/s)中,而高速网络并不采用曼彻斯特编码技术。其原因是它的信号速率为数据速率的两倍,即对于 10 Mb/s的数据速率,则编码后的信号速率为 20 Mb/s,编码的有效率为 50%。对于 100 Mb/s的高速网络来说,200 Mb/s的信号速率无论对传输介质的带宽的要求,还是对传输可靠性的控制都未免太高了,将会增加信号传输技术的复杂性和实现成本,难以推广应用。

5. 信息传输中的编码是什么意思?

信息传输系统中的信源、信道和信宿三要素与交通运输系统中的车辆和道路有点类似。交通运输中有装货和卸货的过程,信息传输时也有“装”和“卸”的问题。“装”就是将欲传递的信息变换成适合信道传输的信号形式;“卸”是指将从信道上送来的信号转换成使信宿能够接收的形式。在信息系统中,前者称作“编码”,后者叫做“译码”。
传递一份电报,发报人(信源)先将自己想表达的意思拟成电文,经报务员把电文通过机器或按键转换成电码,这就是“编码”,这里的“码”就是指按照一定的规则排列起来的符号序列,经过编码,消息(信息)就演变成了信号。在实际信息传递过程中,信息往往要经过多次编码才被送入信道传输。
电码信号通过信道传送到接收端以后,收报员先将电信号接收下来,随之将电码还原成电文,这就是“译码”。译码实际上是编码的反变换,经过变换,使收报人(信宿)理解发报人要表达的意思,这就是电报传递信息的过程。不仅发电报如此,一切信息传递过程概莫例外,只是具体的信源、信道、信宿以及编码、译码的方式方法可能有所不同罢了。

信息传输中的编码是什么意思?

6. “编码”如何传输信息?

信息传输系统中的信源、信道和信宿三要素与交通运输系统中的车辆和道路有点类似。交通运输中有装货和卸货的过程,信息传输时也有“装”和“卸”的问题。“装”就是将欲传递的信息变换成适合信道传输的信号形式;“卸”是指将从信道上送来的信号转换成使信宿能够接收的形式。在信息系统中,前者称作“编码”,后者叫做“译码”。
传递一份电报,发报人(信源)先将自己想表达的意思拟成电文,经报务员把电文通过机器或按键转换成电码,这就是“编码”,这里的“码”就是指按照一定的规则排列起来的符号序列,经过编码,消息(信息)就演变成了信号。在实际信息传递过程中,信息往往要经过多次编码才被送入信道传输。
电码信号通过信道传送到接收端以后,收报员先将电信号接收下来,随之将电码还原成电文,这就是“译码”。译码实际上是编码的反变换,经过变换,使收报人(信宿)理解发报人要表达的意思,这就是电报传递信息的过程。不仅发电报如此,一切信息传递过程概莫例外,只是具体的信源、信道、信宿以及编码、译码的方式方法可能有所不同罢了。
最新文章
热门文章
推荐阅读