热流道的特点

2024-05-13

1. 热流道的特点

 ⒈ 为成型超大件制品:须以热浇道才能使塑胶流动~例如:汽车内衬板、平衡杆、…等,需要较多处同时进浇或顺序进胶。⒉偏离射出成型机之中心的侧向进浇:以热浇道方式进浇将可使模具的构造简单,成形容易、加快成形速度、减少成形时的料头、节约原料成本……一举数得。 1.三板方式在每次射出时,沉重的母模板须在导梢上滑动,即使新品期间堪用,模具寿命也不长。2.三板方式在每次顶出时,从模子取出竖浇道的移动量大于从模子取出成形品所必要的模板移动量。3.由顶出侧进浇时,或者需较长之竖浇道时使用:可免除太长的料头所产生的问题,例如:模具行程可减少、节省料头残留量、成形容易、不缩水、无流痕……等现象。4.对于一些大型或是允许由中心进浇之产品:⑴ 可以用热浇道来取代三板模,以避免不必要的成形机模板的运动。⑵ 在三板模使用之方式中,须移动母模板而取出料头,若用热浇道成形法,开模运动可缩短卸下料头所必要的移动,因此可增加模子厚度,传统方式本须用大成形机方可生产时,使用热浇道之后可改用小成形机。5.较难成形之物件:例如:高黏度、低黏性、高成形温度……、热浇道系统可解决诸此问题。具体的实例:金属粉末射出、陶瓷粉末射出、塑胶磁铁之射出、塑胶轴承之射出、热可塑性橡胶(TPE)……等等。6.可配合三板模之设计,减少料头取出所需要之行程:以热浇道应用在三板模时有以下之优点:⑴料头容易取出,并且可减少料头取出之行程。⑵射料时之料流动较平均,又可分别控制各射出点的操作条件,射出较容易。⑶节省材料费用。7.节省材料费用及人工费用: ⑴冷料头所产生之成本(利息损失)。简单的例子:倘若冷料头占废料率的68%而言,(在制造时1公斤的材料只能生产320 g的产品,而其馀的680 g为冷料头)。⑵尽管冷料头尚可回收,不过基于人力的因素、回收料之混合比例……等等之因素之影响,为了维持正常的运转,必须积存有一些冷料头,因而造成资金的滞留。倘若以材料费用100元/公斤,其积存的废料为500公斤时,每天所需积压的资金将高达500×0.68×100=34000元,因此其在利息上的损失约达每天200元左右,长期而言,金额非常可观。8.高速射出成形时:高速射出成形不只提高成形效率,如杯子、容器……等肉厚薄之成形所不可缺乏的。9.于使用层模(stack mold)时:对于一些浅薄的、数量大的产品,例如:CD外壳、小颗粒产品,只需增加15%的锁模力,以相同的射出时间,即可增加80%的产量。⒑环保问题与效率的问题:由于热浇道是不产生“垃圾”,因此无所谓处理“垃圾”的问题。所谓的“垃圾”意味着:⑴资源的浪费:分析塑胶射出成形的过程中──⑵不占储存料头空间,无绞碎之噪音及变质的问题。由于塑胶种类繁多,加上多种色泽不一,因此往往因积存料头,必须在寸土寸金的土地上占有不少空间,同时积压了不少资金。同时因绞碎必须产生噪音影响安宁,较差的工作环境影响工作士气。

热流道的特点

2. 热流道系统的特性

射出成形之加工就是(塑化)→(流动)→(成形)→(固化结晶化)的工程。 即玻璃状态、高弹性状态(橡胶态)、粘流态(可塑化状态)、分解状态,如图示:玻璃状态:0~T1,分子在冻结状态,硬且脆,遇压力则易破裂。粘流态(可塑化状态):T2~T3,可随意加工成形。分解状态:T3,塑胶开始裂解,出现气体分解物,甚至达烧焦状态。 因此在这种非牛顿流动中,压力增大则流动抵抗减小。因此射出成形时,虽然浇口相当狭小,但却很容易填充于模穴内,至于牛顿流体,再加分类有两种,如图:射出成形是将塑胶溶液采用高速度使其产生变形的一种加工法,因塑胶溶液有压缩性,在高速的流动下,容易引起弹性的压力变动。这个现象,当流动阻力有急速变化时,即可看出这种弹性的压力变动变生后,流体前端的扩散方向极为混乱不安定。但是采用高速填充时,塑胶溶液又像是非压缩性的现象。这种弹性的压力变动(不安定的脉动)是因何而起的?以下分析如图所示:【当塑胶溶液之流动类似层流状态时,即模穴在正常且安定的状态下填充】在图中,富有压缩性的塑胶溶液以螺旋状的弹簧表示,叙想在弹簧施加压力,使往管子中央移动时,当用一样的速度使弹簧由左往右移动的活动,这是理想的层流状态,由于射出压力与阻力在平衡状态时,弹簧的移动很平滑。【如C】可是在某些情况,必需以急速填充时,射出压力及速度也就异常的增高。因此富有弹性的塑胶溶液(弹簧),头一瞬间时承受过程的压缩,第二瞬间时引起强大的阻力,其原因是压力的起伏变动和流动体前端的乱流所发生的,这种流动状况称为弹性乱流。结晶性塑胶与非结晶性塑胶从分子的结构观察,结晶性塑胶─线状高分子,依样其化学构造,有些分子的一部份,乃以有规则地集合,将其称为结晶性塑胶。不是所有的分子都变成此状态,依据冷却条件在重量比有40~80%程度变成结晶状态。此程度称为“结晶度”。结晶之内都是称为Lamella的分子链弯曲、折叠,而未进入产生单位结晶之结晶部分的分子链存在于Lamella或球晶之间,产生非结晶部分。非结晶性塑胶……与结晶性塑胶不同,分子无法有规则地集合。这是由于形成高分子链之原子团太大、架桥妨碍结晶。从容积变化的观察结果,亦可将热可塑性塑胶分为两大类,一种是非结晶性塑胶,另一种是结晶性塑胶。对于结晶性与非结晶性之分类,在表中有关各种塑胶的习性已有注明。对于其容积与温度间之变化,我们可由以下例子来做更进一步的了解。例如:PS(非结晶性塑胶之代表)从20℃加热到200℃时约膨胀8.3%,以密度而言,从0.97 cm/g增大到1.012 cm/g(结晶性塑胶之代表)在同条件下有下列的变化:20℃容积:1.03 cm/g200℃的容积:1.33 cm/g容积增加率:29%已溶融的非晶性聚合物,采用所使用的射出成形机,可做大幅度的压缩。因条件而异,过剩的溶融体也可强制填充于模穴内,在这种条件下做出的成形品,残留着很大的内应力而固化。对成形品的性能有很大的影响。它会在脱模的瞬间被破坏,稍受到外力或因化学药品的作用也很容易受破坏。结晶性塑胶,因加热使结晶完全融解,溶融体成了非晶状态,其动作与非结晶性聚合物一样。值得注意的是压力变高时,从结晶质到非结晶质的转移温度也会提高。结晶性塑胶成形时,在成形品的品质上有一点很重要,即聚合物在非结晶状态时必需要完成成形的动作。这件事,特别是对保压期间而言,保压中的变形即是因流动而引起的。结晶性塑胶的溶融体急速冷却后,成形品的某些部份,其再结晶化受到妨碍,再结晶化的现象无法瞬间完成,而随时继续进行,密度和结晶化程度之间有直接的关系,结晶化程度高,则密度提高。相反地,结晶化程度低,则密度降低,因急激的冷却,而使再结晶化受到妨碍的部份,因温度、时间因素的差异下,或多或少继续进行后结晶化。后结晶化继续进行,直到回复原本此部份的密度为止。因此可以了解后结晶化与后收缩是相关连的,后结晶化和后收缩也是造成成形品弯曲变形和尺寸变化(成形品变小)的原因。模穴表面温度高的话,成形收缩起初很大,热处理时却少有变化。因此,在很高的模具表面温度下做出的成形品,虽然在高温下使用,但其尺寸安定性却很好。因此,决定结晶性塑胶的模穴尺寸时,必需要考虑后结晶、后收缩的关系,而重要的是,模穴表面温度从成形开始就要正确地掌握。当然,要使模穴的表面温度完全无温度差是不可能的,但可使用有效的温度控制系统,尽量减少温度差。

3. 热流道系统的技术关键

一个成功的热流道模具应用项目需要多个环节予以保障。其中最重要的有两个技术因素。一是塑料温度的控制,二是塑料流动的控制。 在热流道模具应用中塑料温度的控制极为重要。许多生产过程中出现的加工及产品质量问题直接来源于热流道系统温度控制的不好。 如使用热针式浇口方法注塑成型时产品浇口质量差问题,阀式浇口方法成型时阀针关闭困难问题,多型腔模具中的零件填充时间及质量不一致问题等。如果可能应尽量选择具备多区域分别控温的热流道系统,以增加使用的灵活性及应变能力。 塑料在热流道系统中要流动平衡。浇口要同时打开使塑料同步填充各型腔。对于零件重量相差悬殊的FAMILY MOLD要进行浇道尺寸设计平衡。 否则就会出现有的零件充模保压不够,有的零件却充模保压过度,飞边过大质量差等问题。热流道浇道尺寸设计要合理。尺寸太小充模压力损失过大。尺寸太大则热流道体积过大,塑料在热流道系统中停留时间过长, 损坏材料性能而导致零件成型后不能满足使用要求。世界上已经有专门帮助用户进行最佳流道设计的CAE软件如MOLDCAE。

热流道系统的技术关键

4. 什么是热流道技术?

热流道是通过加热的办法来保证流道和浇口的塑料保持熔融状态。由于在流道附近或中心设有加热棒和加热圈,从注塑机喷嘴出口到浇口的整个流道都处于高温状态,使流道中的塑料保持熔融,停机后一般不需要打开流道取出凝料,再开机时只需加热流道到所需温度即可。因此,热流道工艺有时称为热集流管系统,或者称为无流道模塑。 热流道技术的优、缺点 热流道技术与常规的冷流道相比有以下的好处: 1、节约原材料,降低成。 2、缩短成型周期,提高机器效率 3、改善制品表面质量和力学性能。 4、不必用三板式模具即可以使用点浇口。 5、可经济地以侧浇口成型单个制品。 6、提高自动化程度。 7、可用针阀式浇口控制浇口封冻。 8、多模腔模具的注塑件质量一致。 9、提高注塑制品表面美观度。 但是,每一项技术都会有自身的缺点存在,热流道技术也不例外: 1、模具结构复杂,造价高,维护费用高。 2、开机需要一段时间工艺才会稳定,造成开价废品较多。 3、出现熔体泄露、加热元件故障时,对产品质量和生产进度影响较大。 上面第三项缺点,通过采购质量上等的加热元件、热流道板以及喷嘴并且使用时精心维护,可以减少这些不利情况的出现。  查看原帖>>

满意请采纳

5. 热流道的结构


热流道的结构

6. 热流道的组成

尽管世界上有许多热流道生产厂商和多种热流道产品系列,但一个典型的热流道系统均由如下几大部分组成:1.主分流板(MANIFOLD)2. 喷嘴 (NOZZLE)3. 温度控制器4. 辅助零件将在以后系列文章深入讨论这些零件的种类与应用。 一个成功的热流道模具应用项目需要多个环节予以保障。其中最重要的有两个技术因素。一是塑料温度的控制,二是塑料流动的控制。1.塑料温度的控制在热流道模具应用中塑料温度的控制极为重要。许多生产过程中出现的加工及产品质量问题直接来源于热流道系统温度控制的不好。如使用热针式浇口方法注塑成型时产品浇口质量差问题,阀式浇口方法成型时阀针关闭困难问题,多型腔模具中的零件填充时间及质量不一致问题等。如果可能应尽量选择具备多区域分别控温的热流道系统,以增加使用的灵活性及应变能力。2.塑料流动的控制塑料在热流道系统中要流动平衡。浇口要同时打开使塑料同步填充各型腔。对于零件重量相差悬殊的FAMILY MOLD要进行浇道尺寸设计平衡。否则就会出现有的零件充模保压不够,有的零件却充模保压过度,飞边过大质量差等问题。热流道浇道尺寸设计要合理。尺寸太小充模压力损失过大。尺寸太大则热流道体积过大,塑料在热流道系统中停留时间过长, 损坏材料性能而导致零件成型后不能满足使用要求。世界上已经有专门帮助用户进行最佳流道设计的CAE软件如MOLDCAE。 1.塑料材料种类热流道模具已被成功地用于加工各种塑料材料。如PP,PE,PS,ABS,PBT,PA,PSU,PC,POM,LCP,PVC,PET,PMMA,PEI,ABS/PC等。任何可以用冷流道模具加工的塑料材料都可以用热流道模具加工。2.零件尺寸与重量用热流道模具制造的零件最小的在0.1克以下。最大的在30公斤以上。应用极为广泛灵活。3.工业领域热流道模具在电子,汽车,医疗,日用品,玩具,包装,建筑,办公设备等各工业部门都得到广泛应用。 在世界上工业较为发达的国家和地区热流道模具生产极为活跃。热流道模具比例不断提高。许多10人以下的小模具厂都进行热流道模具的生产。从总体上讲北美,欧洲使用热流道技术时间较久,经验较多水平较高。在亚洲,除日本外,新加坡,南韩,台湾,香港处于领先地位。北美,欧洲虽然模具制造水平较高,但价格较高交货期较长。相比之下,亚洲的热流道模具制造商在价格与交货期上更具竞争性。而中国的热流道模具尚处于起步阶段,但是正在快速增长,比例不断提高。

7. 热流道的原理

热流道模具是将传统式模具或三板式模具的浇道与流道经过加热,于每一成形时即不需要取出流道和浇道的一种崭新构造。

热流道的原理

8. 热流道的介绍

热流道(hot runner)是在注塑模具中使用的,将融化的塑料粒子注入到模具的型腔中的加热组件系统。