不确定性原理

2024-05-16

1. 不确定性原理

不确定性原理(Uncertainty principle)是海森堡于1927年提出的物理学原理。其指出:不可能同时精确确定一个基本粒子的位置和动量。粒子位置的不确定性和动量不确定性的乘积必然大于等于普朗克常数(Planck constant)除以4π(公式:ΔxΔp≥h/4π)。
这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”

在我们生活的宏观世界,我们能用这些物理量几乎描述了大部分自然现象。
可是好景不长,从牛顿力学到量子力学的建立也就200余年。在牛顿力学统治时代,人们没有高精度显微镜,顶多就看个细胞啥的。随着科技水平的提高,人能感知到的物质尺度越来越小。比如英国物理学家汤姆逊在19世纪末通过稀薄气体放电发现了电子的存在,接着到了20世纪初,卢瑟福通过散射实验发现了原子中心居然有个核,这就是原子核的发现。
以上内容参考百度百科-不确定性原理

不确定性原理

2. 不确定性原理是指什么?

在量子力学中,不确定性原理指在一次试验观测中不能同时确定一个粒子的动量和位置,也就是速度和位置。
当速度确定的准确,位置便不准确
位置准确,速度便不准确。
位置不确定度*动量不确定度>=0.5普朗克常数

3. 什么叫做不确定性原理?

不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
对于不同的案例,不确定性的内涵也不一样,它可以是观察者对于某种数量的信息的缺乏程度,也可以是对于某种数量的测量误差大小,或者是一个系综的类似制备的系统所具有的统计学扩散数值。

扩展资料
维尔纳·海森堡于1927年发表论文《论量子理论运动学与力学的物理内涵》给出这原理的原本启发式论述,希望能够成功地定性分析与表述简单量子实验的物理性质。
这原理又称为“海森堡不确定性原理”。同年稍后,厄尔·肯纳德严格地数学表述出位置与动量的不确定性关系式。两年后,霍华德·罗伯森又将肯纳德的关系式加以推广。
类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。由于不确定性原理是量子力学的基要理论,很多一般实验都时常会涉及到关于它的一些问题。
有些实验会特别检验这原理或类似的原理。例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。对于不确定性原理的相关研究可以用来发展引力波干涉仪所需要的低噪声科技。
关于不确定性原理的延伸还有一个比较诡异的特性,比如,一个粒子可以同时出现在好几个地方,是的你没看错,的确是同时出现在好几个地方。
粒子在统计学上来看的话可以被看作是概率波,在被观测行为干扰前该粒子实际上是以波的形式存在,同时经过了双缝,并形成干涉波,此时的粒子就是同时出现在好几个地方的极好范例。
参考资料来源:百度百科-不确定性原理

什么叫做不确定性原理?

4. “不确定性原理”是什么?


5. 不确定性原理

         不确定性原理非常直观地体现了量子力学和经典力学之间的差异,而且表述还非常简单。它既不像薛定谔方程那样需要微积分和分析力学的基础,也不像算符、矩阵那样需要线性代数的基础,基本上谁都能谈几句。
        但是,如果想真正理解质能方程,就必须深入狭义相对论语境,如果只是站在牛顿力学的角度,直接从字面意思来理解质能方程,那不可避免地就会带来各种误解,不确定性原理是量子力学的产物,我们也只有深入量子语境才能真正理解它,如果只是从牛顿力学的视角,单从字面意思去理解它,一样会产生各种稀奇古怪的误解。不确定性原理的一个常见表述是“我们无法同时确定粒子的位置和动量”,有的地方还喜欢把“确定”替换为“测准”,说“我们无法同时测准粒子的位置和动量,你把粒子的位置测得越准,它的动量就越不准确,反之亦然”。  


这就很容易让人这样理解不确定性原理:为什么我们无法同时测准位置和动量呢?因为如果这里有一个电子,你想测量它的位置就得用光子或者其它粒子去撞击它。你想把电子的位置测得越准就得使用波长越短的光(波长太长就直接绕过去了),而光的波长越短能量就越高,你用越高能量的光子去撞击电子,就会把电子撞飞得越快,这样电子的动量就更加不确定了。           

不确定性原理

6. 什么叫做不确定性原理?

不确定性原理(Uncertainty principle)是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数(Planck constant)除以4π(ΔxΔp≥h/4π),这表明微观世界的粒子行为与宏观物质很不一样。
此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”

扩展资料
如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。
但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。
所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置。

7. 不确定性原理

不确定原理指的是如下:

不确定性原理是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除以4π,这表明微观世界的粒子行为与宏观物质很不一样。

此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”

不确定性原理

8. 不确定性原理

不确定原理指的是如下:
不确定性原理是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除以4π,这表明微观世界的粒子行为与宏观物质很不一样。
此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”

不确定原理的宿命论:
很多人强烈地抵制这种科学决定论,他们感到这侵犯了“上帝”或神秘力量干涉世界的自由,直到20世纪初,这种观念仍被认为是科学的标准假定。
这种信念必须被抛弃的一个最初的征兆,它是由英国科学家瑞利勋爵和詹姆斯·金斯爵士所做的计算,他们指出一个热的物体——例如恒星——必须以无限大的速率辐射出能量。按照当时人们所相信的定律,一个热体必须在所有的频段同等地发出电磁波。
例如,一个热体在1万亿赫兹到2万亿赫兹频率之间发出和在2万亿赫兹到3万亿赫兹频率之间同样能量的波。而既然波的频谱是无限的,这意味着辐射出的总能量必须是无限的。