指数与对数的公式

2024-05-13

1. 指数与对数的公式

对数的运算公式:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算公式:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料:
对数的发展历史:
将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。
由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。
根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。
从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

指数与对数的公式

2. 对数和指数的运算公式分别是什么?

对数的运算公式:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算公式:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料:
对数的发展历史:
将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。
由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。
根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。
从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

3. 有指数对数相关的公式吗?

性质编辑
①
  
;
②
  
;
③负数与零无对数.
④
  
*
  
=1;

恒等式及证明
a^logaN=N (a>0 ,a≠1)
推导:loga (a^N)=N
恒等式证明
在a>0且a≠1,N>0时
设:当LogaN=t,满足(t∈R)
则有a^t=N;
a^(LogaN)=a^t=N;
证明完毕

运算法则编辑
①
 
②
 
③
 
(M,N∈R)
如果
  
,则m为数a的自然对数,即
  
,e=2.718281828…为自然对数
的底。定义: 若
  
则
 
基本性质:
1、
 
2、
 
3、
 
4、
 
5、

有指数对数相关的公式吗?

4. 所有指数对数函数计算公式

指数计算公式:
①


②


③


④

 对数运算公式:
如果a>0,a≠1,M>0,N>0,那么1、loga(MN)=logaM+logaN2、logaMN=logaM-logaN3、logaMn=nlogaM (n∈R)


扩展资料:
指数函数基本性质:
1、 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
2、指数函数的值域为(0, +∞)。
3、 函数图形都是上凹的。
4、a>1时,则指数函数单调递增;若0<a<1,则为单调递减的
参考资料来源:百度百科-指数函数
参考资料来源:百度百科-对数函数

5. 对数 指数的运算公式谁知道

基本运算:
指数:x^n*x^m=x^(m+n)    x^n/x^m=x^(m-n)
对数:log(n)x+log(n)y=log(n)(xy)  log(n)x-log(n)y=log(n)(x/y)  log(n)x^y=ylog(n)x
          还有换底公式 log(x)y=log(n)y/log(n)x 
          其中log(n)x表示以n为底x的对数
指数和对数的关系: x^n=y 则log(x)y=n 
常用的就这些了。

对数 指数的运算公式谁知道

6. 求指数和对数的所有运算公式...

①loga(mn)=logam+logan;
  ②loga(m/n)=logam-logan;
③对logam中m的n次方有=nlogam;
  如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数
  的底。定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
  基本性质:
  1、a^(log(a)(b))=b
  2、log(a)(mn)=log(a)(m)+log(a)(n);
  3、log(a)(m÷n)=log(a)(m)-log(a)(n);
  4、log(a)(m^n)=nlog(a)(m)
  5、log(a^n)m=1/nlog(a)(m)
  推导:
  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
  2、mn=m×n
  由基本性质1(换掉m和n)
  a^[log(a)(mn)]
=
a^[log(a)(m)]×a^[log(a)(n)]
  由指数的性质
  a^[log(a)(mn)]
=
a^{[log(a)(m)]
+
[log(a)(n)]}
  又因为指数函数是单调函数,所以
  log(a)(mn)
=
log(a)(m)
+
log(a)(n)
  3、与(2)类似处理
m/n=m÷n
  由基本性质1(换掉m和n)
  a^[log(a)(m÷n)]
=
a^[log(a)(m)]÷a^[log(a)(n)]
  由指数的性质
  a^[log(a)(m÷n)]
=
a^{[log(a)(m)]
-
[log(a)(n)]}
  又因为指数函数是单调函数,所以
  log(a)(m÷n)
=
log(a)(m)
-
log(a)(n)
  4、与(2)类似处理
  m^n=m^n
由基本性质1(换掉m)
a^[log(a)(m^n)]
=
{a^[log(a)(m)]}^n
  由指数的性质
  a^[log(a)(m^n)]
=
a^{[log(a)(m)]*n}
  又因为指数函数是单调函数,所以
  log(a)(m^n)=nlog(a)(m)
  基本性质4推广
  log(a^n)(b^m)=m/n*[log(a)(b)]
  推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
  换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
  由基本性质4可得
log(a^n)(b^m)
=
[m×ln(b)]÷[n×ln(a)]
=
(m÷n)×{[ln(b)]÷[ln(a)]}
  再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]

7. 对数与指数的运算

=3/2+1-0+1=7/2

对数与指数的运算

8. 指数与对数的运算

y=a^x a的x次方等于y,在这个关系中,x是a的指数,x是y以a为底的对数 y=a^(log a Y)= y. 换句话说,x是y的对数(以a为底),所以如果a以x作为指数,就可以得到y即 a^x = y