计算机思维概念谁提出

2024-05-14

1. 计算机思维概念谁提出

周以真。计算思维是美国卡内基大学的周以真教授于2006年3月首次提出的一种理论。周以真认为:计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类行为的,它涵盖了计算机科学的一系列思维活动。后来国际教育技术协会和计算机科学教师协会于2011年给计算思维做了一个可操作性的定义。             
                  周以真。计算思维是美国卡内基大学的周以真教授于2006年3月首次提出的一种理论。周以真认为:计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类行为的,它涵盖了计算机科学的一系列思维活动。后来国际教育技术协会和计算机科学教师协会于2011年给计算思维做了一个可操作性的定义,即计算思维是一个问题解决的过程。
   该过程包括以下特点: 
  1、制定问题,并能够利用计算机和其他工具来帮助解决该问题。
  2、要符合逻辑地组织和分析数据。
  3、通过抽象,如模型、仿真等,再现数据。
  4、通过算法思想(一系列有序的步骤),支持自动化的解决方案。
  5、分析可能的解决方案,找到最有效的方案,并且有效结合这些步骤和资源。
  6、将该问题的求解过程进行推广并移植到更广泛的问题中。

计算机思维概念谁提出

2. 如何用计算思维的概念分析计算科学的

2006年3月,美国卡内基·梅隆大学计算机科学系主任周以真(Jeannette M. Wing)教授在美国计算机权威期刊《Communications of the ACM》杂志上给出,并定义的计算思维(Computational Thinking)。周教授认为:计算思维是运用计算机科学的基础概念进行问题求解、系统设计、以及人类行为理解等涵盖计算机科学之广度的一系列思维活动。
以上是关于计算思维的一个总定义,周教授为了让人们更易于理解,又将它更进一步地定义为:通过约简、
周以真
嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道问题怎样解决的方法;是一种递归思维,是一种并行处理,是一种把代码译成数据又能把数据译成代码,是一种多维分析推广的类型检查方法;是一种采用抽象和分解来控制庞杂的任务或进行巨大复杂系统设计的方法,是基于关注分离的方法(SoC方法);是一种选择合适的方式去陈述一个问题,或对一个问题的相关方面建模使其易于处理的思维方法;是按照预防、保护及通过冗余、容错、纠错的方式,并从最坏情况进行系统恢复的一种思维方法;是利用启发式推理寻求解答,也即在不确定情况下的规划、学习和调度的思维方法;是利用海量数据来加快计算,在时间和空间之间,在处理能力和存储容量之间进行折衷的思维方法。
优点内容
计算思维吸取了问题解决所采用的一般数学思维方法,现实世界中巨大复杂系统的设计与评估的一般工程思
电子计算机
维方法,以及复杂性、智能、心理、人类行为的理解等的一般科学思维方法。
优点
计算思维建立在计算过程的能力和限制之上,由人由机器执行。计算方法和模型使我们敢于去处理那些原本无法由个人独立完成的问题求解和系统设计。

3. 如何用计算思维的概念分析计算科学的?

2006年3月,美国卡内基·梅隆大学计算机科学系主任周以真(Jeannette M.Wing)教授在美国计算机权威期刊《munications of the ACM》杂志上给出,并定义的计算思维(putational Thinking).周教授认为:计算思维是运用计算机科学的基础概念进行问题求解、系统设计、以及人类行为理解等涵盖计算机科学之广度的一系列思维活动. 
  以上是关于计算思维的一个总定义,周教授为了让人们更易于理解,又将它更进一步地定义为:通过约简、 
  周以真 
  嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道问题怎样解决的方法;是一种递归思维,是一种并行处理,是一种把代码译成数据又能把数据译成代码,是一种多维分析推广的类型检查方法;是一种采用抽象和分解来控制庞杂的任务或进行巨大复杂系统设计的方法,是基于关注分离的方法(SoC方法);是一种选择合适的方式去陈述一个问题,或对一个问题的相关方面建模使其易于处理的思维方法;是按照预防、保护及通过冗余、容错、纠错的方式,并从最坏情况进行系统恢复的一种思维方法;是利用启发式推理寻求解答,也即在不确定情况下的规划、学习和调度的思维方法;是利用海量数据来加快计算,在时间和空间之间,在处理能力和存储容量之间进行折衷的思维方法. 
  优点内容 
  计算思维吸取了问题解决所采用的一般数学思维方法,现实世界中巨大复杂系统的设计与评估的一般工程思 
  电子计算机 
  维方法,以及复杂性、智能、心理、人类行为的理解等的一般科学思维方法. 
  优点 
  计算思维建立在计算过程的能力和限制之上,由人由机器执行.计算方法和模型使我们敢于去处理那些原本无法由个人独立完成的问题求解和系统设计.,2,

如何用计算思维的概念分析计算科学的?

4. 什么是计算思维?计算思维有什么特征?与计算机是什么关系

1、以计算机程序运行逻辑,进行对应的思维逻辑;
2、特征是数据、结果、运算逻辑相对独立,运算逻辑可以重复运行于不同的数据源和数据集,获取稳定可靠的运算结果;
3、计算机思维严格来说只是算法,和计算机硬件本身无关,可以针对此算法,开发可运行于任何硬件和操作系统平台的程序。

5. 人们对计算思维的理解向两个方向发展,分别是

亲亲,您好。计算思维的定义是从目前计算机科学所处的水平和角度提出的概念。这个概念可以概括当前计算机工作的特点,但如果作为一种思维方式进行推广可能会在某种程度上限制人们的思维。
从另一个角度看计算思维概念的提出具有非常积极的意义,它从一定程度上简明扼要地指出了计算机科学的核心和本质问题。为其他科学领域的研究人员深入学习和理解计算机科学提供了很好的目标与方向。综上所述计算思维目前还是一个处于研究和探索的定义或概念,有待发展和完善。【摘要】
人们对计算思维的理解向两个方向发展,分别是【提问】
亲亲,您好。计算思维的定义是从目前计算机科学所处的水平和角度提出的概念。这个概念可以概括当前计算机工作的特点,但如果作为一种思维方式进行推广可能会在某种程度上限制人们的思维。
从另一个角度看计算思维概念的提出具有非常积极的意义,它从一定程度上简明扼要地指出了计算机科学的核心和本质问题。为其他科学领域的研究人员深入学习和理解计算机科学提供了很好的目标与方向。综上所述计算思维目前还是一个处于研究和探索的定义或概念,有待发展和完善。【回答】

人们对计算思维的理解向两个方向发展,分别是

6. 计算思维是运用什么的基础概念

计算思维是运用计算机科学的基础概念。计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类行为的一系列思维活动的统称。计算思维是运用计算机科学的基本理念,进行问题求解,系统设计以及理解人类行为。也就是说,计算思维是一种解决问题的思考方式,而不是具体的学科知识,这种思考方式要运用计算机科学的基本理念,而且用途挺广的。计算思维不是一门孤立的学问,也不是一门学科知识,它源于计算机科学,又和数学思维、工程思维有非常紧密的关系。说它和数学思维相关,是因为用计算思维解决问题时,需要将问题抽象为可计算的数学问题,例如比较罗马帝国的崛起和蒙古人的扩张,需要选择适当的数学模型来对国力进行量化计算。在运用计算思维设计大型复杂系统时,需要考虑效率、可靠性、自动化等问题,这些都是工程思维中非常重要的东西。

7. 什么是计算思维?计算思维有什么特征?与计算机是什么关系

1、以计算机程序运行逻辑,进行对应的思维逻辑;
  2、特征是数据、结果、运算逻辑相对独立,运算逻辑可以重复运行于不同的数据源和数据集,获取稳定可靠的运算结果;
  3、计算机思维严格来说只是算法,和计算机硬件本身无关,可以针对此算法,开发可运行于任何硬件和操作系统平台的程序.

什么是计算思维?计算思维有什么特征?与计算机是什么关系

8. 在我们计算,有没有那些计算方式符合我们计算机的思维?

计算思维是建立在计算过程的能力和限制之上的,不管这些过程是由人还是由机器执行的。计算方法和模型给了我们勇气去处理那些原本无法由任何个人独自完成的问题求解和系统设计。计算思维直面机器智能的不解之谜:什么人类能比计算机做得更好?什么计算机能比人类做得更好?最基本的是它涉及这样的问题:什么是可计算的?今天,我们对这些问题的答案仍是一知半解。

计算思维是每个人的基本技能,不仅仅属于计算机科学家。在阅读、写作和算术(英文简称3R)之外,我们应当将计算思维加到每个孩子的解析能力之中。正如印刷出版促进了3R的传播,计算和计算机也以类似的正反馈促进了计算思维的传播。

计算思维涉及运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为。计算思维涵盖了反映计算机科学之广泛性的一系列思维活动。

当求解一个特定的问题时,我们会问:解决这个问题有多困难?怎样才是最佳的解决之道? 计算机科学根据坚实的理论基础来准确地回答这些问题。表明问题的困难程度是为了考量机器——就是用来运行其解的计算工具之基本能力。我们必须考虑机器的指令系统、它的资源约束和它的操作环境。

为了有效地求解一个问题,我们可能要进一步问:一个近似解是否就足够了,是否可以利用一下随机化,以及是否允许误正或误负。计算思维就是把一个看来困难的问题重新阐述成一个我们知道怎样解的问题,如通过约简、嵌入、转化和仿真的方法。

计算思维是一种递归思维。它是并行处理。它是把代码译成数据又把数据译成代码。它是由推广量纲分析进行的类型检查。对于别名或赋予人与物多个名字的做法,它既知道其益处又了解其害处。对于间接寻址和程序调用的做法,它既知道其威力又了解其代价。它评价一个程序时,不仅仅根据其准确性和效率,还有美学的考量,而对于系统的设计,还考虑简洁和优雅。

计算思维采用了抽象和分解来迎战浩大复杂的任务或者设计巨大复杂的系统。它是关注的分离。它是选择合适的方式去陈述一个问题,或者是选择合适的方式对一个问题的相关方面建模使其易于处理。它是利用不变量简明扼要且表述性地刻画系统的行为。它是我们在不必理解每一个细节的情况下就能够安全地使用、调整和影响一个大型复杂系统的信心。它就是为预期的多个用户而进行的模块化,它就是为预期的未来应用而进行的预置和缓存。

计算思维是通过冗余、堵错、纠错的方式,在最坏情况下进行预防、保护和恢复的一种思维。它称堵塞为死结,叫合同为界面。它就是学习在谐调同步相互会合时如何避免竞争的情形。

计算思维是利用启发式推理来寻求解答。它就是在不确定情况下的规划、学习和调度。它就是搜索、搜索、再搜索,最后得到的是一系列的网页,一个赢得游戏的策略,或者一个反例。计算思维是利用海量的数据来加快计算。它就是在时间和空间之间,在处理能力和存储容量之间的权衡。

考虑这些日常中的事例:当你女儿早晨去学校时,她把当天需要的东西放进背包;这就是预置和缓存。当你儿子弄丢他的手套时,你建议他沿走过的路回寻;这就是回推。在什么时候你停止租用滑雪板而为自己买一对呢?这就是在线算法。在超市付账时你应当去排哪个队呢?这就是多服务器系统的性能模型。为什么停电时你的电话仍然可用?这就是失败的无关性和设计的冗余性。完全自动的大众图灵测试是如何区分计算机和人类(简称CAPTCHA)的,即CAPTCHAs是怎样鉴别人类的?这就是充分利用求解人工智能难题之艰难来挫败计算代理程序。

计算思维将渗入到我们每个人的生活之中,那时诸如算法和前提条件已成为每个人日常词汇的一部分,非确定论和垃圾收集已含有计算机学家所指的含义,而树已常常被倒过来画了。

我们已见证了计算思维在其它学科中的影响。例如,机器学习已经改变了统计学。就数据尺度和维数而言,统计学习用于各类问题的规模仅在几年前还是不可想象的。各种组织的统计部门都聘请了计算机科学家。计算机学院系正在联姻已有或开设新的统计部门。

计算机学家们近来对生物科学的兴趣是由他们坚信生物学家能够从计算思维中获益的信念驱动的。计算机科学对于生物学的贡献决不限于其能够在海量时序数据中搜索寻找模式规律的本领。最终的希望是数据结构和算法——我们的计算抽象和方法——能够以阐释其功能的方式表示蛋白质的结构。计算生物学正在改变着生物学家的思考方式。类似地,计算博弈理论正改变着经济学家的思考方式,纳米计算改变着化学家的思考方式,量子计算改变着物理学家的思考方式。

这种思维将成为不仅仅是其他科学家,而且是其他每一个人的技能组合之部分。普在计算之于今天就是计算思维之于明天。普在计算是已变为今日之现实的昨日之梦,计算思维就是明日之现实。

它是什么,又不是什么
计算机科学是计算的学问——什么是可计算的,怎样去计算。因此,计算思维具有以下特性:

概念化,不是程序化。计算机科学不是计算机编程。像计算机科学家那样去思维意味着远远不止能为计算机编程。它要求能够在抽象的多个层次上思维。

基础的,不是机械的技能。基础的技能是每一个人为了在现代社会中发挥职能所必须掌握的。生搬硬套之机械的技能意味着机械的重复。具有讽刺意味的是,只有当计算机科学解决了人工智能的宏伟挑战——使计算机像人类一样思考之后,思维才会变成机械的生搬硬套。

人的,不是计算机的思维。计算思维是人类求解问题的一条途径,但决非试图使人类像计算机那样地思考。计算机枯燥且沉闷;人类聪颖且富有想象力。我们人类赋予计算机以激情。配置了计算设备,我们就能用自己的智慧去解决那些计算时代之前不敢尝试的问题,就能建造那些其功能仅仅受制于我们想象力的系统。

数学和工程思维的互补与融合。计算机科学在本质上源自数学思维,因为像所有的科学一样,它的形式化解析基础筑于数学之上。计算机科学又从本质上源自工程思维,因为我们建造的是能够与实际世界互动的系统。基本计算设备的限制迫使计算机学家必须计算性地思考,不能只是数学性地思考。构建虚拟世界的自由使我们能够超越物理世界去打造各种系统。

是思想,不是人造品。不只是我们生产的软件硬件人造品将以物理形式到处呈现并时时刻刻触及我们的生活,更重要的是还将有我们用以接近和求解问题、管理日常生活、与他人交流和互动之计算性的概念;而且,

面向所有的人,所有地方。当计算思维真正融入人类活动的整体以致不再是一种显式之哲学的时候,它就将成为现实。

许多人将计算机科学等同于计算机编程。有些家长为他们主修计算机科学的孩子看到的只是一个狭窄的就业范围。许多人认为计算机科学的基础研究已经完成,剩下的只是工程部分而已。当我们行动起来去改变这一领域的社会形象时,计算思维就是一个引导着计算机教育家、研究者和实践者的宏大愿景。我们特别需要走进大学之前的听众,包括老师、父母、学生,向他们传送两个主要信息:
1)智力上极有挑战性并且引人入胜的科学问题依旧亟待理解和解决。这些问题的范围和解决方案的范围之唯一局限就是我们自己的好奇心和创造力;同时一个人可以主修计算机科学并且干什么都行。一个人可以主修英语或者数学,接着从事各种各样的职业。计算机科学也一样。一个人可以主修计算机科学,接着从事医学、法律、商业、政治,以及任何类型的科学和工程,甚至艺术工作。
2)计算机科学的教授应当为大学新生开一门称为“怎么像计算机科学家一样思维”的课,面向非专业的,而不仅仅是计算机科学专业的学生。我们应当使大学之前的学生接触计算的方法和模型。我们应当设法激发公众对于计算机领域中的科学探索之兴趣,而不是悲叹对其兴趣的衰落或者哀泣其研究经费的下降。所以,我们应当传播计算机科学的快乐、崇高和力量,致力于计算思维的常识化。