球体积求导得球面积公式有什么联系

2024-05-13

1. 球体积求导得球面积公式有什么联系

R增加ΔR﹙小﹚,ΔV=球壳体积,ΔV/ΔR≈球面积S,∴V'﹙对R﹚=球面积S.

球体积求导得球面积公式有什么联系

2. 求导球的体积公式

V=4/3πR³
(V)'|R=(4/3)*3πR²=4πR²=大圆面积

3. 求导球的体积公式

V=4/3πR³
  (V)'|R=(4/3)*3πR²=4πR²=大圆面积

求导球的体积公式

4. 球体积公式怎么推导出来的

证明:
证:v=4/3×πr^3
欲证v=4/3×πr^3,可证1/2v=2/3×πr^3
做一个半球h=r, 做一个圆柱h=r

∵V柱-V锥
= π×r^3- π×r^3/3
=2/3π×r^3
∴若猜想成立,则V柱-V锥=V半球
根据祖暅原理:夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。
∴若猜想成立,两个平面:S1(圆)=S2(环)
1.从半球高h点截一个平面 根据公式可知此面积为π×(r^2-h^2)^0.5^2=π×(r^2-h^2)
2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)
∵π×(r^2-h^2)=π×(r^2-h^2)
∴V柱-V锥=V半球
∵V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3
∴V半球=2/3π×r^3
由V半球可推出V球=2×V半球=4/3×πr^3
证毕。
扩展资料:
球体性质,用一个平面去截一个球,截面是圆面。球的截面有以下性质:
1、球心和截面圆心的连线垂直于截面。
2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。
参考资料来源:百度百科-球

5. 如何推导球的面积公式

球体面积公式S=4πR²
√表示根号
把一个半径为R的球的上半球横向切成n(无穷大)份, 每份等高
并且把每份看成一个类似圆台,其中半径等于该类似圆台顶面圆半径
则从下到上第k个类似圆台的侧面积


其中r(k)=√[R^2-﹙kh)^2],
h=R^2/{n√[R^2-﹙kh)^2}.
S(k)=2πr(k)h=(2πR^2)/n则 S=S(1)+S(2)+……+S(n)= 2πR^2;
乘以2就是整个球的表面积 4πR^2;

如何推导球的面积公式

6. 球的体积公式推导过程

为了让数学界的同行对球体公式的推导方法和过程能够进一步了解,免得往后对我(魏德武)产生质疑,现将二种球体推导的方法和过程都一一展示出来:
一,第一种从“下而上”不足近似值逼近(比实际值小)准确值推导法:设球的半径为R,半球体高的平分数为n;r1,r2,r3----rn分别为各不同圆柱饼的半径,具体推算步骤如下:根据直角三角形定理,先求出每个圆柱饼的半径得:(1)r1=根号R^2-(R/n)^2,r2=根号R^2-(2R/n)^2,r3=根号R^2-(3R/n)^2-----rn=根号R^2-(nR/n)^2.(2)然后再求出每个圆柱饼的体积之和:V=V1+V2+V3------=πR/n{R^2-(R/n)^2}+πR/n{R^2-(2R/n)^2}+πR/n{R^2-(3R/n)^2}---++----πR/n{R^2-(nR/n)^2}=πR^3/n(1-1^2/n^2+1-2^2/n^2+1-3^2/n^2----+1-n^2/n^2)=πR^3/n{n-(1^2+2^2+3^2--+--n^2)/n^2}=πR^3/n{n-n(n+1)(2n+1)/6n^2=πR^3{1-(2n^2+3n+1)/6n^2}=πR^3{1-(2+3*1/n+1/n^2)/6}=πR^3{1-(1+1/n)(2+1/n)/6}(注:当n取无穷大时1/n趋向于0)得半球的体积V=4/6πR^3后再乘以2。即:整球的体积公式V=4/3πR^3。
二,第二种从“上而下”过剩近似值逼近(比实际值大)准确值推导法:设球的半径为R,半球体高的平分数为n;r1,r2,r3----rn分别为各不同圆柱饼的半径,具体推算步骤如下:根据直角三角形定理,先求出每个圆柱饼的半径得:(一),(1)r1=根号R^2-(R-R/n)^2,(2)r2=根号R^2-(R-2R/n)^2,(3)r3=根号R^2-(R-3R/n)^2---++---(n)rn=根号R^2-(R-nR/n)^2,(二)再求出每个圆柱饼的体积之和:V=V1+V2+V3------=πR/n{R^2-(R-R/n)^2}+πR/n{R^2-(R-2R/n)^2}+πR/n{R^2-(R-3R/n)^2}---++----πR/n{R^2-(R-nR/n)^2}=πR^3/n{2/n-(1/n)^2}+πR^3/n{2×2/n-(2/n)^2}+πR^3/n{2×3/n-(3/n)^2}+πR^3/n{2n/n-(n/n)^2}=πR^3/n{2×(1+2+3--+--n)/n-(1^2+2^2+3^2---++-n^2)/n^2}=πR^3/n{n(n+1)/n-n(n+1)(2n+1)/6n^2}=πR^3{(n^2+n)/n^2-(2n^2+3n+1)/6n^2}=πR^3(6n^2+6n-2n^2-3n-1)/6n^2=πR^3(4n^2+3n-1)/6n^2=πR^3{(4+3/n-(1/n)^2)}/6=πR^3(4-1/n)(1+1/n)/6.(注:当n取无穷大时1/n趋向于0)得半球的体积V=4/6πR^3,最后再乘以2,得:整球的体积公式V=4/3πR^3。综上所述:事实证明二种推导结果完全一致,只是前者较为简单,后者更为复杂而已,建议学生还是采用前者更便捷!。

7. 球的表面积公式的推导过程?

公式证明

  √表示根号 
  运用第一数学归纳法:把一个半径为R的球的上半球横向切成n份, 每份等高
  并且把每份看成一个圆柱,其中半径等于其底面圆半径
  则从下到上第k个圆柱的侧面积S(k)=2πr(k)×h
  其中h=R/n ,r(k)=√[R²-﹙kh﹚²]
  S(k)=√[R²-(kR/n)²]×2πR/n
  =2πR²×√[1/n²-(k/n²)²]
  则 S(1)+S(2)+……+S(n) 当 n 取极限(无穷大)的时候,半球表面积就是2πR²
  乘以2就是整个球的表面积 4πR²。

球的表面积公式的推导过程?

8. 球的体积公式推导过程是什么?

分析如下:
把一个半径为R的球体中心点在坐标原点o上表面分割成许多小块,每一小块的面积为ds,ds四个顶点A,B,C,D之间的距离AB=BC=CD=DA,四个角度相等,由o点指向A,B,C,D所张的立体角为dΩ,这样ds = dΩR。
把四个顶点和o点连接,形成一个接近四棱锥体【体积为hL/3 ,h是四棱锥体的高,L是四棱锥体的底面积】的微小体积dv,当分割的无限细密,ds接近零时候,ds= L,h = R, 并且:
hL/3 = dΩR = dv
dv是球的体积元素,对dv环绕一周【角度为4π】积分,就是求的体积公式。
∮dΩR/3 = 4πR/3。

球体性质
用一个平面去截一个球,截面是圆面。球的截面有以下性质:
1、球心和截面圆心的连线垂直于截面。
2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。