对称性破缺的简介

2024-05-14

1. 对称性破缺的简介

李政道认为对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。当我们的实验技术得到改进时,我们的观测范围自然要扩大。因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。这和“对称性破缺则是由‘宏观’走向‘微观’而展现事物差异性的方式”哲学观点是一致的。假如没有对称性破缺,这个世界将会失去活力,也将是单调、黯淡的,也不会有生物。自然界同样也存在着诸多对性破缺的例子。比如:弱作用力下的宇称不守恒、粒子与反粒子的不对称、手性分子的对称性破缺等等。

对称性破缺的简介

2. 对称性破缺的介绍

对称性破缺是一个跨物理学、生物学、社会学与系统论等学科的概念,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。对称性是普遍存在于各个尺度下的系统中,有对称性的存在,就必然存在对称性的破缺。对称性破缺也是量子场论的重要概念,指理论的对称性为真空所破坏,对探索宇宙的本原有重要意义。它包含“自发对称性破缺”和“动力学对称性破缺”两种情形。

3. 对称性破缺的举例

下面列举几个对称性自发破缺的事例: 实验已经证明,强作用下宇称守恒。这是与微观粒子的镜象对称性相联系的守恒定律。1956年前后,在对最轻的奇异粒子衰变过程的研究中遇到了“t ~ q 疑难”。实验中发现的t 和q 粒子,它们质量相等,电荷相同,寿命也一样。但它们衰变的产物却不相同:实验结果的分析表明,3个p 介子的总角动量为零,宇称为负。而2个p 介子的总角动量如为零,则宇称只能是正。因此,从质量、寿命和电荷来看, q 和t 似乎是同一种粒子。但从衰变行为来看,如果宇称是守恒量,则q 和t 就不可能是同一种粒子。1956年,李政道和杨振宁解决了这个难题。他们提出弱相互作用过程中宇称不守恒的设想,吴健雄的钴60原子核b 蜕变实验验证了这个设想。1957年,吴健雄在10-2 K下做原子核b 衰变实验,用核磁共振技术使核自旋按确定方向排列,观察b 衰变后的电子数分布,发现无镜像对称性 —— 证明了弱作用的宇称不守恒性。1957年李政道和杨振宁获诺贝尔物理奖。 1900年法国学者贝纳尔 (H.Benard)发现:从下面均匀加热水平容器中薄层液体时,若上下温差超过一临界值, 液体中突现类似蜂房的六边形网格, 液体的传热方式由热传导过渡到了对流,每个六角形中心的液体向上流动,边界处液体向下流动。这是对流与抑止因素(黏性和热扩散)竞争的结果。 大多数动物在外观上都具有左右对称性,但体内的器官就不那么对称了。如果深入到分子层次,就会发现一种普遍存在于生物界的更深刻的左右不对称性。1844年德国化学家E.E.Mitscherlich发现,酒石酸钠铵和葡萄酸钠铵的结晶具有相同的晶形,一样的化学性质,但溶液的旋光性不同。前者使偏振面右旋,后者无旋光性。1847年法国Louis Pasteur发现了葡萄酸钠铵中有互为镜象对称的两种旋光异构物,其结构如图所示。对此现象解释的信念是:光活性有与生命过程相联系的起源。现代生物化学指出:有机化合物的旋光异构现象与有机分子中碳原子四个键的空间构形有关。用L(livo)和D(dextro)分别表示左、右型旋光异构体,(+)、(-)代表该物质的溶液的旋光方向,(-)表示左旋,(+)代表右旋。碳四面体的左右两种构型、甘油醛中四个基团L、D两种构型以及丙氨酸的旋光异构体简要图示如左图,它明显地反映出了其结构的左右不对称性。生命的基本物质是生物大分子,它包括蛋白质、核酸、多糖和脂类。其中蛋白质是生命功能的执行者,其分子是右氨基酸组成的长链。每种氨基酸都应有L、D两种旋光异构体。但实验证明组成生物蛋白质的20种氨基酸都是L型的,D型氨基酸只存在于细菌细胞壁和其它细菌产物中。核酸是遗传信息的携带者和传递者,分为核糖核酸(RNA)和脱氧核酸(DNA)两种。右下图是DNA分子双螺旋结构模型,通常是右旋的。这正是生物大分子的手性特征。生物体内化合物的这种左右不对称性正是生命力的体现。维持这种左右不平衡状态的是生物体内的酶,生物一旦死亡,酶便失去活力,造成左右不平衡的生物化学反应也就停止了。由此可见,生命与分子的不对称性息息相关。问题是地球上生命发源之初,左右对称性的破缺是怎样开始的?即分子手性的起源是什么?生物的起源是什么?这些都是有待人们去研究的谜。总之,时空、不同种类的粒子、不同种类的相互作用、整个复杂纷纭的自然界,包括人类自身,都是对称性自发破缺的产物。对称性破缺的机制是什么?实在现象中的对称性破缺与基本物理规律的对称性是否相容?不同层次的非对称性间如何关联?这些都是现代物理尚未解决的重要课题。 宇宙广大区域的真空中运行着光速的光子、中微子,超光速的引力子、反引力子,用E1=ma2方程计算,真空中蕴藏着的能量是很大的,而且不同区域的真空蕴藏的能量差异极大,如黑洞奇点的真空区和宇宙奇点的真空区与宇宙广大区域的真空相比较。宇宙真空充满了引力子和反引力子,而且由于纯引力的黑洞存在,宇宙总体上已出现了引力子和反引力子的不对称,即引力子总量多于反引力子。对称性破缺的本质来自于宇宙真空的不对称性产生真空对称性自发破缺机制。如果系统受到一个小扰动破坏了它的对称性,我们说它的对称性破缺,比如,原子中的这样一个扰动可以由电场引起,由于扰动的作用,原子将不再停留在它原先的定态上,而从一个能级跃迁到另一个能级,并发射或吸收一个可见光光子。对称性破缺同样出现在粒子中,这时的干扰因素就是宇宙中无所不在的引力子和反引力子。之所以出现“宇称不守恒”,是因有些粒子在真空中的引力子、反引力子的干扰下,必然会出现上述现象,而且较易出现在有弱核力参与的粒子转化过程中,因为这种力较弱,即反引力场较弱,较易受到外界的引力子或反引力子的干扰。 在宇宙中,上下级物质特别容易产生干扰,形成对称性破缺,粒子级物质较易对原子形成干扰,因为前者是后者的结构材料,同理,引力子级物质较易对粒子形成干扰,形成对称性破缺。而引力子级物质对原子、分子、生物体较难在短期内形成可察觉的干扰,因为它们存在巨大的质量差异,这种干扰只能渐进式的,一种从“量变到质变”的缓慢过程,引力子级物质最先影响粒子级物质,通过它逐渐对原子形成影响。粒子世界的“不确定”、“测不准”就是因为粒子质量太小,而宇宙真空中的引力子、反引力子密度比光子、中微子等粒子高出很多倍,引力场使得宏观宇宙的时空都发生弯曲,粒子在无数引力子和反引力子的碰撞干扰下,出现“不确定”、“测不准”是必然的。正是真空的这种特性,造成“宇称不守恒、CP破坏及时间(T)反演不变性的破坏、规范对称性的自发破缺”等一系列对称性丢失。而且宇宙必须存在对称中的不对称,完全对称的宇宙将会凝结,如果正奇子与反奇子在对抗与协同中完全对称,将不可能形成引力子与反引力子,如果正、反夸克组合出完全对称的正、反质子,正、反中子,今日的宇宙将只剩下微波辐射。

对称性破缺的举例

4. 什么叫自发对称性破缺?

物理体系从高温到低温的过程中,或者从高能级到基态的过程中,从一个对称的体系变得不对称的过程,称为对称性自发破缺
 
最简单的对称性自发破缺

将一根火柴棍直立在桌上,这时火柴棍与重力,桌面构成的体系具有以火柴棍为轴的旋转对称性。火柴棍如果圆头朝下,那肯定是立不稳的,总会倒下,指向某个特定的方向,破坏先前的旋转对称性。这一过程中,对称性从有到无,自发地消失,因此叫做对称性自发破缺。
 
顺磁铁磁相变中的对称性自发破缺

大家常见的永磁铁通常都是铁磁体。铁磁体随着温度的升高,磁性会逐渐下降。直到超过某个特定的温度后,磁性会完全消失。在这个温度以上,只要没有外界磁场,磁体不能自己产生磁场,这时铁磁体已经变成顺磁体。这个转变温度称为居里温度。将居里温度以上的材料逐渐降温,材料会由不能自己保留磁场的顺磁体变回能够自己产生磁场的铁磁体。只要温度降得足够缓慢,恢复后的铁磁体往往会带有磁场。考虑材料在居里温度以上到居里温度下这个转变。在居里温度以上,磁体是往往是各向同性的(某些特殊材料除外)。物理体系具有很大的对称性。从宏观上看,这时材料没有磁性,因此也不存在特定的方向。当温度降低时,磁体恢复磁性。如果没有外界磁场诱导,恢复的磁场方向将是随机的,这跟之前处在一个没有特殊方向的状态相关。材料恢复磁场,说明它内部选择了某一个特定的方向作为体系的特定方向。对称性不再保持。这一相变,由具有对称性的状态,自动变到了不具有对称性的状态,就是对称性自发破缺
 
粒子物理中的对称性自发破缺我们所处的世界

粒子物理学家认为,我们所处的世界相对于理论物理中的某些能标,是一个能量很低的状态。因此,只要构成我们世界的基本规律允许,我们完全有可能处在一个对称性自发破缺了的世界。理论物理学家用对称性自发破缺解释弱相互作用和电磁相互作用的分离,其中最重要的机制是希格斯机制。涉及到的一系列理论被称为粒子物理的标准模型。在该理论下,电磁相互作用和弱相互作用原本是同一个相互作用,称为电弱相互作用。电弱相互作用与西格斯场耦合,由于西格斯场具有特殊的势函数,而世界又要选择能量低的状态。那么,西格斯场将会由原来具有su(2)对称性的场破缺为没有对称性的场。破缺使得传递弱相互作用的粒子获得很大的质量,从而弱相互作用比电磁作用弱得多。

5. 什么叫自发对称性破缺?

物理体系从高温到低温的过程中,或者从高能级到基态的过程中,从一个对称的体系变得不对称的过程,称为对称性自发破缺
最简单的对称性自发破缺
将一根火柴棍直立在桌上,这时火柴棍与重力,桌面构成的体系具有以火柴棍为轴的旋转对称性。火柴棍如果圆头朝下,那肯定是立不稳的,总会倒下,指向某个特定的方向,破坏先前的旋转对称性。这一过程中,对称性从有到无,自发地消失,因此叫做对称性自发破缺。
顺磁铁磁相变中的对称性自发破缺
大家常见的永磁铁通常都是铁磁体。铁磁体随着温度的升高,磁性会逐渐下降。直到超过某个特定的温度后,磁性会完全消失。在这个温度以上,只要没有外界磁场,磁体不能自己产生磁场,这时铁磁体已经变成顺磁体。这个转变温度称为居里温度。将居里温度以上的材料逐渐降温,材料会由不能自己保留磁场的顺磁体变回能够自己产生磁场的铁磁体。只要温度降得足够缓慢,恢复后的铁磁体往往会带有磁场。考虑材料在居里温度以上到居里温度下这个转变。在居里温度以上,磁体是往往是各向同性的(某些特殊材料除外)。物理体系具有很大的对称性。从宏观上看,这时材料没有磁性,因此也不存在特定的方向。当温度降低时,磁体恢复磁性。如果没有外界磁场诱导,恢复的磁场方向将是随机的,这跟之前处在一个没有特殊方向的状态相关。材料恢复磁场,说明它内部选择了某一个特定的方向作为体系的特定方向。对称性不再保持。这一相变,由具有对称性的状态,自动变到了不具有对称性的状态,就是对称性自发破缺
粒子物理中的对称性自发破缺我们所处的世界
粒子物理学家认为,我们所处的世界相对于理论物理中的某些能标,是一个能量很低的状态。因此,只要构成我们世界的基本规律允许,我们完全有可能处在一个对称性自发破缺了的世界。理论物理学家用对称性自发破缺解释弱相互作用和电磁相互作用的分离,其中最重要的机制是希格斯机制。涉及到的一系列理论被称为粒子物理的标准模型。在该理论下,电磁相互作用和弱相互作用原本是同一个相互作用,称为电弱相互作用。电弱相互作用与西格斯场耦合,由于西格斯场具有特殊的势函数,而世界又要选择能量低的状态。那么,西格斯场将会由原来具有su(2)对称性的场破缺为没有对称性的场。破缺使得传递弱相互作用的粒子获得很大的质量,从而弱相互作用比电磁作用弱得多。

什么叫自发对称性破缺?

6. 如何理解对称性自发破缺?

大家常见的永磁铁通常都是铁磁体。铁磁体随着温度的升高,磁性会逐渐下降。直到超过某个特定的温度后,磁性会完全消失。在这个温度以上,只要没有外界磁场,磁体不能自已产生磁场,这时铁磁体已经变成顺磁体。这个转变温度称为居里温度。将居里温度以上的材料逐渐降温,材料会由不能自己保留磁场的顺磁体变回能够自己产生磁场的铁磁体。只要温度降得足够缓慢,恢复后的铁磁体往往会带有磁场。考虑材料在居里温度以上到居里温度下这个转变。在居里温度以上,磁体是往往是各向同性的(某些特殊材料除外)。物理体系具有很大的对称性。从宏观上看,这时材料没有磁性,因此也不存在特定的方向。当温度降低时,磁体恢复磁性。如果没有外界磁场诱导,恢复的磁场方向将是随机的,这跟之前处在一个没有特殊方向的状态相关。材料恢复磁场,说明它内部选择了某一个特定的方向作为体系的特定方向。对称性不再保持。
这一相变,由具有对称性的状态,自动变到了不具有对称性的状态,就是对称性自发破缺。粒子物理学家认为,我们所处的世界相对于理论物理中的某些能标,是一个能量很低的状态。因此,只要构成我们世界的基本规律允许,我们完全有可能处在一个对称性自发破缺了的世界。理论物理学家用对称性自发破缺解释弱相互作用和电磁相互作用的分离,其中最重要的机制是希格斯机制。涉及到的一系列理论被称为粒子物理的标准模型。
自然界存在的粒子自发对称破缺在该理论下,电磁相互作用和弱相互作用原本是同一个相互作用,称为电弱相互作用。电弱相互作用与希格斯场耦合,由于希格斯场具有特殊的势函数,而世界又要选择能量低的状态。那么,希格斯场将会由原来具有su(2)对称性的场破缺为没有对称性的场。破缺使得传递弱相互作用的粒子获得很大的质量,从而弱相互作用比电磁作用弱得多。

7. 对称性破缺的系统

耗散理论在解释生命分子手性起源中取得了较大成功,这也是本书所拥护的观点;近些年也得到更多的实验支持。普利高津(Prigogine)认为,在远离平衡的条件下,一个开放的物理化学体系可以通过分支现象,从原先空间均匀的各向同性状态发展到集中都是稳定的但时空特性可能不同的有序状态,即由无序中产生有序。这两种空间有序状态唯一的差别可能仅仅在于其对称性,体系远离平衡态时在分支点附近对微小扰动是敏感的。1998年Kenso Soai和他的小组证实了分叉结构(bifurcation framework)。他们采用了混合了对映异构的亮氨酸,其中一种构型少量过剩。在这不均衡的溶液中反应形成的嘧啶醇也有一种对映体少量过剩。这种分子在自身形成过程中能起催化作用,因而占主导地位。因为自催化的循环反应结构放大了这个细微手性破缺效应,这使得生命分子为择单一手性。1995 年3 月,美国《科学》杂志报道在洛杉矶召开的“生物分子手性均一起源”的国际会议上,与会的物理、化学、天文学家大多数认为,“没有手性就没有生命”,“手性起源先于生命”而不是生命自然选择了手性。2006 年6 月1 日出版的《Nature》7093 期第621 页一篇题为“Thermodynamic control of asymmetric amplification in amino acid catalysis”的文章,Martin Klussmann 等人提出了手性分子不对称扩增的另一种解释,这是对自催化机制的一种替代机制。与传统手性药物合成不同的是,这是一种动力学控制下的不对称扩增。总的来说分子的手性根源来自于弱相互作用,这说明电磁作用力并不是化学尺度上唯一影响化学分子的作用力。弱相互作用所诱发的费米子的手征性,主要通过反馈特征的自催化效应及其它某种放大机制,放大到分子尺度,从而成为生命形成重要的驱动因素。

对称性破缺的系统

8. 对称性破缺的物理

物理学中几何对称与抽象对称对称性破缺可以理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。或者用物理语言叙述为:控制参量λ跨越某临界值时,系统原有对称性较高的状态失稳,新出现若干个等价的、对称性较低的稳定状态,系统将向其中之一过渡。和前面群论提到几何对称操作中旋转、反映、反演相似,在物理学中则是电荷对称、时间反演、空间反映,的对称操作就是C、T、P。CTP也存在对称与破缺。按照诺特定理,守恒量意味着对称性;在物理学上不仅仅有几何的对称还有抽象的对称。比如:电荷守恒定律涉及抽象的性质而非动力学的性质,它对应着抽象的对称性;还有保守力在保守场中的做功,这些就是规范对称。在寻求各种相互作用力的理想的量子理论中,规范对称性在起着核心的作用;而且统一力的理论尝试也是在规范对称性的范围之内的。  对称性破缺的一个例子,对称参量环面的扭结超过临界值,系统向对称性较低的稳定状态过渡。在哪里形成新的结并不重要,因为整个变化过程是混沌的。   在70 年代早期,理论物理学家发现比旋转和平移这种操作更深刻,更有效的几何对称性,这就是超对称。比如具有1/2 费米子必须转动720°才能回复到原先的位置,这种双值性决定了它的几何对称操作玻色子完全不同。这样的性质在通常空间的几何操作的框架内是不能处理的。在超对称理论中,在通常的四维时空上附加另外的四维,称为超空间,目的是为了容纳费米子奇异的几何性质。因此这些附加的“费米维数”不是我们所知的空间或时间的维数。超对称操作能从通常空间转到附加的费米维数,即能把玻色子变为费米子,把费米子变为玻色子。所以我们可以把费米子和玻色子看成一个几何存在的两个不同的投影。  超对称理论中基本粒子和他们超对称粒子。  按照这个理论,费米子和玻色子具有直接的物理联系,费米子与玻色子相互对应,即每个粒子都有其超对称伴侣;但从现在已知的玻色子和费米子来看,这种对称性似乎不成立的。有观点认为,现在物理学中系统的对称性破缺,是因为更深层次的对称性是隐藏着的,也许自然本身是超对称的;同样,超对称也会出现真空自发破缺。德国数学家卡鲁扎(Kaluza)提出,通过附加一维额外的虚空间自由度来写出五维而不是四维的爱因斯坦引力场方程;五维的爱因斯坦场方程不但给出了通常的四维引力方程,还给出另外一组方程,而这正好就是电磁场的麦克斯韦方程组。按照这个理论电磁作用和引力作用都不是单独的力,而是在不可见的更高维空间自由度的世界里。奥斯卡·克莱因(O.Klein)认为我们没能察觉到那一维额外自由度的原因是,在某种意义上它“卷缩”到一个非常小的尺度,就好比一个水管在远处看就会把它当成一个曲线。这个尺度就是普朗克尺度,10*(-35) 米是空间被分割的最小距离。 上面提到超对称几何也可以作为引力几何理论的基础,相应的理论就称为超引力论。在超引力中,引力子已不再是传递引力的唯一媒介粒子,超对称是在费米子与玻色子之间提供了某种联系。按照这个理论应该存在一种自旋3/2 的基本粒子,称为引力量子。引力量子的超对偶粒子总数达172 个,由于这一理论中有8 种引力量子,人们称之为N=8 的超引力理论。剑桥大学的史蒂芬·霍金(Stephen Hawking)在他就职Lucasian 数学讲座教授的演说中提到,假使N=8 的超引力大有希望,那么“理论物理的终结为期不远了。” 当理论在大于四维的时空中构造时,超引力的几何结构可以大大简化,对于N=8 的超引力,最为有利的维数是11。在11 维的克莱因-卡鲁扎理论中,只存在一种力--引力,而电磁,弱和强力只不过是引力的附属品。也许我们就在11 维空间中,所以笔者叫做网名11 维空间,便由此得来。11 维空间能否成立? 弱作用的一个明显特征是它破坏左右镜象对称,这意味着基本粒子具有‘手性’,确定的手征性只存在于单数维的空间中;也就是说,空间的维数是奇数,因而时空的维数必定是偶数。这是11 维空间遇到的难题。