布朗运动的几种视角

2024-04-28

1. 布朗运动的几种视角

 用  表示一个布朗运动
    在对连续时间定义好 filtration    后,鞅的概念是容易推广到连续时间上的:对  ,满足  
    由布朗运动的独立增量性,我们有:  因此布朗运动是一个连续时间的鞅。
    值得注意的是连续时间鞅,它的轨道不一定连续(当然布朗运动是连续的)。可以证明,轨道连续的 连续时间鞅 , 本质上一定是一个布朗运动 ,但是在任意时刻的方差可以变化。
    连续时间的马尔可夫过程也是类似的。简单来说,就是给出  ,  的分布只与给定  的分布有关。
    对一个布朗运动,时刻  之后发生的事情独立与时刻  之前发生的事情,这种性质叫做 强马尔可夫性 。
   如果一个随机过程在任意有限个时间节点上组成的随机向量的有限维分布都是高斯分布,那么这个过程就叫做高斯过程。
   给定  ,那么  就是一组独立的正态分布随机变量。从而  服从高斯分布。
   高斯分布由均值向量和协方差矩阵唯一确定,对于标准布朗运动,我们有:  
   定义  ,显然  是一个停时,表示位置  的首达时刻。
     是一个指数鞅。从而我们可以定义停止过程  ,它也是一个鞅。通过这个命题可以证明,布朗运动的首达时间几乎绝对有限,即  
      关于布朗运动比较全面的介绍,参考:
    金融随机分析1——概率论和布朗运动 

布朗运动的几种视角

2. 几何布朗运动

一、正态随机变量概率密度函数描述:
 (μ为总体均数、σ为标准差)
 
二、布朗运动的数学描述:
价格时间函数P(x),T+t时刻的价格P(T+t)与T时刻价格P(T)的差值:P(T+t)-P(T)是一个正态随机变量,分布的平均期望值μt,标准差为。(T>0,t>0)
重大缺陷:
1、按此价格理论上可有负值,但实际中价格不可能存在负值。
2、不论价格初值为何值,固定时间长度的价格差具有相同的正态分布,不符合常理。
 
三、几何布朗运动:
把价格差改为价格的涨跌幅:可以避免直接使用布朗运动描述价格的缺陷,即为几何布朗运动。
  是一个正态随机变量,分布的平均期望值μt,标准差为。(T>0,t>0)
******************
 
几何布朗运动
几何布朗运动的作用是用来模拟股价的变动。它的好处在于,一般形式布朗运动中取值可能为负数,而几何布朗运动取值永远不小于0,这一点符合股价永远不为负的特征。
几何布朗运动微分形式的表述。或者称SDE(随机微分方程)形式:

其中的S(t)可以理解为股价。
几何布朗运动函数形式表述:

上述式子告诉我们,可以先生成一服从的一般形式布朗运动,然后求其指数函数,最后乘以S(0),即期初的股价,就可以得到几何布朗运动。
补充:为何这里t的系数多出一项?具体可以参考伊藤公式。 



欢迎求助   三个人的团儿!!!

3. 几何布朗运动和分数布朗运动有什么区别

几何布朗运动 (GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动,[1] also called aWiener process.几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。
分数布朗运动
世界是非线性的,宇宙万物绝大部分不是有序的、线性的、稳定的,而是混沌的、非线性的、非稳定和涨落不定的沸腾世界。有序的、线性的、稳定的只存在于我们自己构造的理论宫殿,而现实宇宙充满了分形。在股票市场的价格波动、心率及脑波的波动、电子元器件中的噪声、自然地貌等大量的自然现象和社会现象中存在着一类近乎全随机的现象,它们具有如下特性:在时域或空域上有自相似性和长时相关性和继承性;在频域上,其功率谱密度在一定频率范围内基本符合1/f的多项式衰减规律。因此被称为1/f族随机过程。Benoit Mandelbrot和Van Ness 提出的分数布朗运动(fractional Brownian motion,FBM)模型是使用最广泛的一种,它具有自相似性、非平稳性两个重要性质,是许多自然现象和社会现象的内在特性。分数布朗运动被赋予不同的名称,如分形布朗运动、有偏的随机游走(Biased Random walk)、分形时间序列(Fractional time serial)、分形维纳过程等。其定义如下:
设0<H<1,Hurst参数为H的分数布朗运动为一连续Gaussian过程,且 ,协方差为 。H=1/2时, 即为标准布朗运动 。
分数布朗运动特征是时间相关函数C(t)≠0,即有持久性或反持久性,或者说有“长程相关性”,不失一般性,可以给出一维情形的布朗运动及分数布朗运动的定义。分数布朗运动既不是马尔科夫过程,又不是半鞅,所以不能用通常的随机来分析。分数布朗运动与布朗运动之间的主要区别为:分数布朗运动中的增量是不独立的,而布朗运动中的增量是独立的;分数布朗运动的深层次上和布朗运动的层次上它们的分维值是不同的,分数布朗运动(分形噪声)的分维值alpha等于1/H,H为Hurst指数,而布朗运动(白噪声)的分维值都是2。
Hurst在一系列的实证研究中发现,自然现象都遵循“有偏随机游走”,即一个趋势加上噪声,并由此提出了重标极差分析法(Rescaled Range Analysis,R/S分析)。设R/S表示重标极差,N表示观察次数,a是固定常数,H表示赫斯特指数,在长达40多年的研究中,通过大量的实证研究,赫斯特建立了以下关系:
R/S=(aN)H
通过对上式取对数,可得:
log(R/S)=H(logN十loga)
只要找出R/S关于N的log/log图的斜率,就可以来估计H的值。 Hurst指数H用来度量序列相关性和趋势强度:当H=0.5时,标准布朗运动,时间序列服从随机漫步;当H≠0.5时,C(t)≠0,且与时间无关,正是分数布朗运动的特征。当0.5<H<1时,序列是趋势增强的,遵循有偏随机游走过程;当0<H<0.5时,序列是反持续性的。可以看出,Hurst指数能够很好地刻画证券市场的波动特征,将R/S分析应用于金融市场,可以判断收益率序列是否具有记忆性,记忆性是持续性的还是反持续性的。所以,分数布朗运动是复杂系统科学体系下的数理金融学的一个合适的工具,作为对描述金融市场价格波动行为模型的维纳过程的一般化、深刻化具有重要的理论与现实意义。

几何布朗运动和分数布朗运动有什么区别

4. 几何布朗运动和分数布朗运动有什么区别

几何布朗运动数值的随机改变,但改变方向的概率大小不同。
分数布朗运动是指实物粒子的不规则运动。
综上,几何布朗运动是布朗运动向其他领域的拓展,而分数布朗运动与布朗运动相近

5. 布朗运动的数学

{B(t)}布朗运动(brownian motion)也称为维纳过程,是一个随机过程,如果满足以下性质:1. 独立的增量(independence of increments)对于任意的t>s, B(t)-B(s)独立于之前的过程B(u):0=0是关于t的连续函数。固定一条路径, B(t)->B(s) 满足依概率收敛。

布朗运动的数学

6. 几何布朗运动和分数布朗运动有什么区别

几何布朗运动 (GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动,[1] also called aWiener process.几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格.
分数布朗运动
世界是非线性的,宇宙万物绝大部分不是有序的、线性的、稳定的,而是混沌的、非线性的、非稳定和涨落不定的沸腾世界.有序的、线性的、稳定的只存在于我们自己构造的理论宫殿,而现实宇宙充满了分形.在股票市场的价格波动、心率及脑波的波动、电子元器件中的噪声、自然地貌等大量的自然现象和社会现象中存在着一类近乎全随机的现象,它们具有如下特性:在时域或空域上有自相似性和长时相关性和继承性;在频域上,其功率谱密度在一定频率范围内基本符合1/f的多项式衰减规律.因此被称为1/f族随机过程.Benoit Mandelbrot和Van Ness 提出的分数布朗运动(fractional Brownian motion,FBM)模型是使用最广泛的一种,它具有自相似性、非平稳性两个重要性质,是许多自然现象和社会现象的内在特性.分数布朗运动被赋予不同的名称,如分形布朗运动、有偏的随机游走(Biased Random walk)、分形时间序列(Fractional time serial)、分形维纳过程等.

7. 几何布朗运动的介绍

几何布朗运动(GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动. 1几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。

几何布朗运动的介绍

8. 几何布朗运动的几何布朗运动的特性

给定初始值S0,根据伊藤积分,上面的 SDE(【数】随机微分方程式)有如下解:  St=S0exp((μ−σ22)t+σWt),  对于任意值 t,这是一个对数正态分布随机变量,其期望值和方差分别是  E(St)=S0eμt,  Var(St)=S20e2μt(eσ2t−1),  也就是说St的概率密度函数是:  fSt(s;μ,σ,t)=12π−−√1sσt√exp⎛⎝⎜⎜−(lns−lnS0−(μ−12σ2)t)22σ2t⎞⎠⎟⎟.  根据伊藤引理,这个解是正确的。比如,考虑随机过程 log(St). 这是一个有趣的过程,因为在布莱克-舒尔斯模型中这和股票价格的对数回报率相关。对f(S) = log(S)应用伊藤引理,得到  dlog(S)=f′(S)dS+12f′′(S)S2σ2dt=1S(σSdWt+μSdt)−12σ2dt=σdWt+(μ−σ2/2)dt.  于是Elog(St)=log(S0)+(μ−σ2/2)t.这个结果还有另一种方法获得:applying the logarithm to the explicit solution of GBM:  log(St)=log(S0exp((μ−σ22)t+σWt))=log(S0)+(μ−σ22)t+σWt.  取期望值,获得和上面同样的结果:Elog(St)=log(S0)+(μ−σ2/2)t.