半导体探测器的基础知识有哪些?

2024-05-16

1. 半导体探测器的基础知识有哪些?

半导体原子规则排列成点阵状态。其最小单元叫作晶包,对锗来讲是小四面体,即金刚石结构。电子在晶体中为晶包所公有,形成能带结构,如图4-1-1所示。下面的能带称为价带,又称满带,平时被电子填满。中间是禁带(又称能隙)。上面是导带,平时没有电子(又称空带)。在价带以下还有更低能量的价带;在导带以上还有更高能量的导带。如果令Eg代表禁带宽度,Eg(金属)< Eg< Eg(绝缘体)。中间是半导体。在T=0时,理想的半导体是无杂质的半导体,导带全空(无电子),价带全满,被电子充满,加上电压不导电,电阻率非常大。在T≠0时,热激发使价带电子跳到导带,电子都处在导带底层,空穴均处在价带上层,并且处于动平衡状态,激发的电子—空穴对数目等于复合电子—空穴对数目。这样的半导体叫作本征半导体。从能带模型看,产生电子—空穴对,破坏了一个原子的共价键,Eg就是该结合键的结合能:

式中 Ni——电子密度,与温度有关;Pi——空穴密度,与温度有关;K——波尔兹曼常数;T——绝对温度,°K;Eg——能隙(禁带宽度);N ( T )——表示跃迁到某一状态的状态函数。
本征半导体:晶格结构完整,没有缺陷,没有杂质,电阻率极大,电子充满价带,绝对零度不导电。
本征半导体Si或Ge,掺杂少量的三价或五价元素,便改变了半导体的电性能。如五价的P、As加入到Si或Ge,P、As置换了Ge晶格点阵的Ge原子。因是五价,四个电子与周围Ge组成四组共价键,第五个电子与As结合不紧密,在热激发下跳到导带,留下正电荷在点阵上形成正电中心,这种杂质称为施主杂质。
如果掺杂少量三价B、Ga元素,去置换Si或Ge原子,它要从周围的Ge原子拉过来一个电子,组成四对共价键,即原来价带的一个电子跳入Ga固定能级形成负电中心,在价带中留下一个空穴,这种杂质称为受主杂质。施主杂质As给出一个电子,它一般靠近导带,也称为浅层杂质,距禁带0.03~0.05eV。受主杂质Ga接受一个电子,它一般靠近满带,也称为深层杂质。
单晶本身浓度为1022原子/cm3,这是本征半导体。杂质浓度为109~1010原子/cm3,为高纯锗作半导体探测器;杂质浓度为1011~1012原子/cm3,为特种半导体,作特种器件;杂质浓度为1012~1013原子/cm3,为一般半导体,作晶体管。
半导体分为N型半导体、P型半导体。N型半导体的电子是多数载流子,空穴是少数载流子;P型半导体的电子是少数载流子,空穴是多数载流子。P型半导体与N型半导体结合在一起,接触面形成PN结。

1.载流子的寿命载流子寿命てe( h )越长越好,大约为300μs~1ms。对于一块完整的晶体,载流子迁移率与温度有关。当温度高时,晶格受热运动产生光学、声学振动,载流子在迁移过程中,可能发生碰撞而受阻力。反之亦然。载流子的迁移率μ与温度t关系曲线如图4-1-2所示。由于晶格点阵有空位,造成附近区点阵错乱,称为点缺陷;由于点阵错乱,引起点阵变形,称为线缺陷;面与面之间点阵错乱,即位错乱,引起的点阵畸变,称为面缺陷。由于上述三种缺陷产生了凸凹部分,使点阵的结合能发生改变,出现了能量的高低变化。能量低的地方被称为陷井。当载流子通过陷井时,把载流子陷进去,使载流子暂停一下,当得到适当机会后它再跃出。由于掺杂质后,施主杂质产生了正电荷中心,受主杂质产生了负电荷中心。有电荷中心就产生了库仑电场,当载流子经过库仑电场时,使其暂停一下,当得到适当机会,把它放出,这种电荷中心称为捕捉中心。当被电荷中心捕捉后,被进一步陷落于价带中,与价带中的一个空穴复合,使载流子消失,这种现象称为复合。载流子的寿命与陷井、捕捉、复合三种现象有很大关系。一般情况下,温度低迁移率大,载流子寿命长。电子—空穴对由产生到消失,所用时间称为载流子寿命:

式中 てe(h)——载流子寿命;μe(h)——载流子迁移率;λ——载流子的平均自由行程;?——受陷落截面;P——陷井密度。
对于厚度为1cm的耗尽层,由于载流子的损失,能量谱加宽0.1%。
2.载流子的平均自由行程在没有外界电场的情况下,电子—空穴对从产生到消失,所走的平均距离,称为载流子的平均自由行程。载流子的平均自由行程与陷井的密度、掺杂质的种类有关。陷井密度小,受陷落截面小,λ大。氧和铜在锗晶体中特别容易扩散。如果本征半导体在空气中暴露1min,就产生一个氧化层使表面造成破坏,导致漏电流增大。对于半导体,漏电流越小越好,漏电流与半导体制造工艺有很大关系。晶体表面清洁,漏电流就小,一般小于10-10A。
载流子的浓度随时间变化:

式中 N0exp——初始载流子密度;Nt——载流子随时间变化密度。
3.载流子的收集率当γ量子入射到本征区后,γ量子由于能量损失,便产生一定数量的电子—空穴对,在外界电场的作用下,被收集到阳极,产生电流脉冲,这种收集如果是完全的话,电流脉冲幅度达到极大值。收集载流子多少称为收集率。收集率大小与半导体制造工艺、材料、体积大小,本征区宽度有关;从本质上讲,还取决于载流子迁移率、迁移长度、复合效应、陷井、捕捉中心密度大小;另外还和外加电场强弱有关。
4.对半导体探测器的要求气体探测器:在电离室中产生一个电子—离子对,大约需要能量ε≈30eV;半导体探测器:在晶体中产生一个电子—空穴对,大约需要能量ε≈3eV;闪烁体探测器:在光电倍增管光阴极上,产生一个光电子,大约需要能量ε≈300eV。
半导体探测器产生一个电子—空穴对需要的能量ε越小,能量分辨率越高。产生一个电子—空穴对需要能量/γ光子损耗能量= 0.3~0.35,γ光子损耗的能量主要消耗于晶格的光学、声学振动中。
5.载流子的漂移速度原子在外加电场作用下,在晶体内产生区域电场,电场有固定指向,电子—空穴对沿电场漂移,漂移速度ve( h):

式中 μe(h)——电子一空穴对漂移率或漂移本领,也叫载流子迁移率。
在室温情况下,电子的漂移率μe=1300cm2/(V?s),空穴的漂移率μ(h)=500cm2/(V?s);在不同电场下,μe(h)不是常数,在1000~2000V/cm时,μe(h)达到极大值,为1×107~2×107cm2/(V?s)。
μe(h)是温度T的函数,温度为0时,μe(h)达到极大值,因为0时晶格无振动,电子—空穴对不受任何碰撞,运动无阻力。晶体的任何参杂和晶格的不完整性都会引起μe (h)的减小。
材料的电阻率表示为:

用式(4-1-4)计算的Pi与实际测得的Pi相差极大,因为在实际上没有真正无杂质的纯晶体。
电子密度Ni与温度关系较大,随温度变化快。Ni与μe(h)比较,μe(h)随温度变化较慢一些:

6.几种材料的禁带度


禁带宽度越宽,晶体的使用温度越高,0.66eV(低温)→1.45eV(室温)→2.8eV(高温)。锗原子序数为32,碘化钠原子序数为11、53,因此两个探测器探测效率相差不多。
7.Si和Ge的基本特性参数

8.产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35的原因γ量子入射到本征区,它并不是只与弗米表面起作用,还与满带下面能量更低的带起作用,交给满带能量,是随机性的。这样激发出来的电子,其能量有高、有低。这样一来,能量高的就可以跳到导带,还有的跳到更高导带上去。这时它是不稳定的,放出能量回到低能导带上;处在低能价带上的空穴也是不稳定的,它也要逐渐回到价带的最表层(空穴移动是通过上一层满带的电子来补偿的),同时空穴也将放出能量。电子与空穴放出的能量大部分交给晶格,能量低的产生光学振动,能量高一点的作声学振动,所以点阵总是处于一种振动状态,γ量子损耗的能量不是完全都用于产生电子—空穴对,而是一大部分用于产生各种点阵的振动。产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35。产生一个电子—空穴对损耗的能量比禁带宽度大好几倍。

半导体探测器的基础知识有哪些?

2. 那位能提供一些关于单光子探测器的知识?

单光子探测是一种极微弱光探测法,它所探测的光的光电流强度比光电检测器本身在室温下的热噪声水平还要低,用通常的直流检测方法不能把这种湮没在噪声中的信号提取出来。单光子计数方法利用弱光照射下光子探测器输出电信号自然离散的特点,采用脉冲甄别技术和数字计数技术把极其弱的信号识别并提取出来。这种技术与模拟检测相比,有受外界因素影响小、信噪比高、线性动态区范围大、可实现数字数据处理等优点[1]。
    入射的光子信号打到光电倍增器件上产生光电子,然后经过倍增系统倍增产生电脉冲信号,称为单光子脉冲。脉冲幅度较小的脉冲是探测器噪声;脉冲幅度较大的是单光电子峰。 为鉴别电平,用它来把高于 的脉冲鉴别输出,从而实现单光子计数。
单光子探测技术普遍用于通信,量子信息,荧光和拉曼光谱学等领域,特别是量子信息技术和微光探测技术最关键的器件之一。

3. 红外对射探测器的基础知识

 ① 支柱式安装:比较流行的支柱有圆形和方形两种,早期比较流行的是圆形截面支柱,现在的情况正好反过来了,方形支柱在工程界越来越流行。主要是探测器安装在方形支柱上没有转动、不易移动。除此以外,有广泛的不锈钢、合金、铝合金型材可供选择也是它的优势之一。在工种上的另外一种做法是选用角钢作为支柱,如果不能保证走线有效地穿管暗敷,让线路裸露在空中,这种方法是不能取的。支柱的形状可以是1字形、Z字形或者弯曲的,由建筑物的特点及防盗要求而定,关键点在于支柱的固定必须坚固牢实,没有移位或摇晃,以利于安装和设防、减少误报。;② 墙壁式安装:现在防盗市场上处于技术前沿的主动红外线探测器制造商,能够提供水平180°全方位转角,仰俯20°以上转角的红外线探测器,如ALEPH主动红外线探测器HA、ABT、ABF系列产品,可以支持探头在建筑物外壁或围墙、栅栏上直接安装。 1.线路绝对不能明敷,必须穿管暗设,这是探测器工作安全性的最起码的要求。2.安装在围墙上的探测器,其射线距墙沿的最远水平距离不能大于30 M,这一点在围墙以弧形拐弯的地方需特别注意。3.配线接好后,请用万用表的电阻档测试探头的电源端①、②端子,确定没有短路故障后方可接通电源进行调试。 (一)投光器光轴调整打开探头的外罩,把眼睛对准瞄准器,观察瞄准器内影响的情况,探头的光学镜片可以直接用手在180°范围内左右调整,用螺丝刀调节镜片下方的上下调整螺丝,镜片系统有上下12°的调整范围,反复调整使瞄准器中对方探测器的影响落入中央位置。在调整过程中注意不要遮住了光轴,以免影响调整工作。投光器光轴的调整对防区的感度性能影响很大,请一定要按照正确步骤仔细反复调整。(二)受光器光轴调整第一步:按照投光器光轴调整一样的方法对受光器的光轴进行初步调整。此时受光器上红色警戒指示灯熄灭,绿色指示灯长亮,而且无闪烁现象,表示套头光轴重合正常,投光器、受光器功能正常。第二步:受光器上有两个小孔,上面分别标有+和-,用于测试受光器所感受的红外线强度,其值用电压来表示,称为感光电压。将万用表的测试表笔(红+、黑-)插入测量受光器的感光电压。反复调整镜片系统使感光电压值达到最大值。这样探头的工作状态达到了最佳状态。注意事项:四光束探测器有两组光学系统,需要分别遮住受光器的上、下镜片,调整至上、下感光电压值一致为止。较古老的四光束探测器两组光学系统是分开调节,由于涉及到发射器和接受器两个探头共四个光学系统的相对应关系,调节起来相当困难,需要特别仔细调节,处理不当就会出现误报或者防护死区。ABF四光束探测器已把两个部分整合为一体调节,工程施工容易多了。(三)遮光时间调整在受光器上设有遮光时间调节钮,一般探头的遮光时间在50m/s ~ 500m/s间可调,探头在出厂时,工厂里将探头的遮光时间调节到一个标准位置上,在通常情况下,这个位置是一种比较适中的状态,都考虑了环境情况和探头自身的特点,所以没有特殊的原因,也无须调节遮光时间。如果因设防的原因需要调节遮光时间,以适应环境的变化。一般而言,遮光时间短,探头敏感性就快,但对于像飘落的树叶、飞过的小鸟等的敏感度也强,误报警的可能性增多。遮光时间长,探头的敏感性降低,漏报的可能性增多。工程师应根据设防的实际需要调整遮光的时间。 探测器在日常工作中,由于长期工作在室外,因此不可避免地受到大气中粉尘、微生物以及雪、霜、雾的作用,长久以往,在探测器的外壁上往往会堆积一层粉尘样的硬壳,在比较潮湿的地方还会长出一层厚厚的藓苔,有时候小鸟也会把排泄物拉到探测器上,这些东西会阻碍红外射线的发射和接受,造成误报警。在日本的用户通常会委托工程公司维护,通常是在一个月左右蘸上清洁剂清洗干净每一个探测器的外壳,然后擦干。大家建立了良好的信用关系,都会尽心尽力地做好这一工作。除了清洁探测器外壳,每隔一个月要做一次发炮实验,检验防盗系统的报警性能。

红外对射探测器的基础知识

4. 有人认为,嫦娥三号探测器登月成功,表明人能够摆脱规律的制约。请运用《生活与哲学》的有关知识,对这

该观点是错误的
1)规律,是事物运动过程中固有的,本质的,必然的,稳定的联系。(理论知识)。。。嫦娥三号探测器登月的成功是建立在正确认识客观规律的基础上的。

2)但在客观规律面前,人类不是无能为力的。(理论知识)。。。嫦娥三号探测器登月成功是人们正确发挥了主观能动性的结果,是正确的利用了客观规律的,从而为人类造福。
综上,该观点是错误的。嫦娥三号的成功登月,并不代表人类可以摆脱规律的制约,但是人们可以认识和利用规律,改造客观世界,为人类造福。
补充:如果这类题目出现在选择题中,要知道规律不能被创造,消灭,主宰,左右,改变,只能被认识和利用。
回答的不是很好,但还是希望对你有所帮助,望采纳,谢谢。

5. 有关于防爆火灾探测器器的知识

有啊,
给你一些资料

http://img02.b2b.hc360.com/pic-2/handbook-pic-0/2-0-2020420.pdf
http://img09.b2b.hc360.com/pic-9/handbook-pic-9/9-9-1917099.pdf
http://img04.b2b.hc360.com/pic-4/handbook-pic-0/4-0-1916940.pdf
http://img08.b2b.hc360.com/pic-8/handbook-pic-0/8-0-1917080.pdf
http://img03.b2b.hc360.com/pic-3/handbook-pic-9/3-9-1917139.pdf

有关于防爆火灾探测器器的知识

6. 有关防盗报警方面的知识?

防盗报警器小知识1、什么是防盗报警系统?
防盗报警系统是利用各类功能的探测器对住户房屋的周边、空间、环境及人进行整体防护的系统。

2、什么是探测器?
探测器是利用传感器感应各种物理变化、化学变化而产生的电流、脉冲等信号去推动射频电路发射出报警信号。

3、防盗主机作用及工作方式
主机是系统的核心。是用来接收探测器发来的报警信号的同时进行及时的反馈;主机在接收到报警信号后,会产生高分贝的警号声,同时会借助电信网络向外拨打多组由主人自己设置的报警电话。

4、被动红外防盗探测器
  被动红外探测器是依靠被动的吸收热能动物活动时身体散发出的红外热能进行报警的,也称热释红外探头,其探测器本身不发射红外线的

5、被动红外探测器红外探测的基本概念 
在警戒范围内,为什么人在移动时被动红外探测器能够发生报警信号呢?
在自然界,任何高于绝对温度(-273度)时物体都将产生红外光谱,不同温度的物体,其释放的红外能量的波长是不一样的,因此红外波长与温度的高低是相关的。
在被动红外探测器中有两个关键性的元件,一个是热释电红外传感器(PIR),它能将波长为8一12um之间的红外信号变化转变为电信号,并能对自然界中的白光信号具有抑制作用,因此在被动红外探测器的警戒区内,当无人体移动时,热释电红外感应器感应到的只是背景温度,当人体进人警戒区,通过菲涅尔透镜,热释电红外感应器感应到的是人体温度与背景温度的差异信号,因此,红外探测器的红外探测的基本概念就是感应移动物体与背景物体的温度的差异。另外一个器件就是菲涅尔透镜,菲涅尔透镜有两种形式,即折射式和反射式。菲涅尔透镜作用有两个:一是聚焦作用,即将热释的红外信号折射(反射)在PIR上,第二个作用是将警戒区内分为若干个明区和暗区,使进入警戒区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这样PIR就能产生变化的电信号

6、什么是探测范围?
探测范围指探测器正常工作的感应范围,即探测器能够探测到在此范围以内的所有物体运动从而产生报警状态。

7、什么是探测距离?
探测器在正常工作下所能探测到的最远距离。

8、什么是发射距离?
报警系统中无线器件在被触发后将无线报警信号以电磁波的形式发射出去的最远距离。

9、什么是感应灵敏度?
指探测器被触发报警时探测距离的远近和反应速度快慢,感应灵敏度高,则在离探测器很远的距离都能探测到,感应灵敏度低,则只能探测到较近的范围。

10、被动红外探测器的安装注意事项
由于被动红外探测器是属于一种微弱信号检测设备,在安装对必须注意一些细节方面的问题,如高度,灵敏度等。正确安装一个被动红外探测器,必须掌握以下几个方面的信息:首先是对探测器的性能特点必须了解,其次要合理确定安装的位置,最后必须要仔细调试。不能说探测器能报警就说明安装好了,那么如何确定一个被动红外探测器的安装位置呢?
*根据说明书确定正常的安装角度
安装高度不是随意的,会影响探测器的灵敏度和防小宠物的效果。试想一下,一个探测器装在2M高度的位置和2.5高度的位置,那么移动物体从地面移动时,切割明区和暗区的频率是不一样的。
*不宜面对玻璃门窗
被动红外探测器正对玻璃门窗,会有两个问题:一是白光干扰,显然PIR对白光具有很强的抑制功能,但毕竟不是100%的抑制。因此避免正对玻璃门窗,可以避免强光的干扰。二是避免门窗外复杂的环境干扰,比如人群流动、车辆等。
*不宜正对冷热通风口或冷热源
被动红外探测器感应作用是与温度的变化具有密切的关系。冷热通风口和冷热源均有可能引起探测器的误报,对有些低性能的探测器,有时通过门窗的空气对流也会造成误报。
*不宜正对易摆动的物体
易摆动的物体将会使微波探测器起作用,因此同样可能造成误报。古注意非法入侵路线 
安装探测器的目的足防止犯罪分子的非法入侵,在确定安装位置之前,必须要考虑建筑物主要出人口。实际上我们防止了出入口,截断非法入侵线路,也就达到了我们的目的。

11、主动红外对射防盗探测器
由发射端主动发射红外线,由接收端接收红外线,形成红外线的网状。这种探测器能够对入侵物进行主动的防范,不会因小宠物的穿越或气候的影响而产生误报警情,从而最大的限度降低了误报率。

12、什么是有线与无线?
按报警信号传输方式分:有线型和无线型。即探测器在检测到非法入侵者后,以两种方式将报警信号传输给报警主机,无线型探测器通过发一定频率的电磁波传输报警信号,有线型探测器分为开关信号输出和电平信号输出。

13、有线防盗与无线防盗的区别
  有线产品的优缺点
优点:因其是专线专用,所以报警信号传输相对稳定,不易受到外界因素的干扰。
缺点:影响美观,施工工作量大,操作复杂、维修不便,须专人维护。
  无线产品的优缺点
优点:不会破坏防范区域的整体美观,安装简单,操作简便,老人、小孩一学就会。
缺点:报警信号会受到外界因素的干扰,导致报警信号传输距离衰减

14、什么是门磁探测器?其工作原理是怎样的?
门磁探测器是用来感应门窗开合的。通常有木门磁、窗磁、卷帘门磁、铁门磁。其原理是利用磁铁可以控制控制磁控管开合的原理,当两者靠拢在一起时磁控管呈闭合状态,此时再将两者分开磁控管就会断开,断开信号就会触发射频电路发出无线报警信号给报警主机。

15、什么烟雾探测器?其工作原理是怎样的?
烟雾探测器应用于家居、办公、商业等区域。对现场早期发生的火灾烟雾及时发出报警,防患于未然。通常分为离子式型烟雾、和光电式烟雾。离子式型烟雾其原理是利用电极间有烟雾颗粒时,电极间的电压会发生变化原理。

16、什么是煤气探测器?其工作原理是怎样的?
主要安装厨房中,有效地防止煤气泄露危及主人的生命.其前端的传感器探测到煤气时温度会发生变化,其变化的过程通过处理电路转变成控制信号触发发出报警信号.

17、联网中心与主机之间通过什么方式通讯?
二种方式:
1、监控中心与主机通过电信的电话线路来通讯,它不影响正常的电话通话。
2、监控中心与主机通过无线信号来通讯。

7. 我想知道七龙珠中的探测器是否可以在现实中做出来 需要什么材料 多少成本 需要哪些知识

基本功能,雷达已经实现了,但是要追踪无追踪器的物体,现在是不可能的,也没发现什么地球上只有为数几个的特殊物体给你去追.

我想知道七龙珠中的探测器是否可以在现实中做出来 需要什么材料 多少成本 需要哪些知识

8. 有关嫦娥1号的小知识

嫦娥1号”奔月之旅较原定计划推迟了近一个月,预计在下月正式启动。“嫦娥一号”早在一个多月前已进入发射中心技术场地,为“嫦娥一号”新修的发射平台也已进入待命状态,运载“嫦娥一号”的火箭不日将进入发射中心。 
除了我国,日本、印度、德国也公布了探月计划,如何看待这些计划呢?月球探测工程中心副主任郝希凡说,各国的月球探测计划既有共同点,又各有特色。首先,在新一轮月球探测高潮中,各国都选择绕月探测作为第一步。第二,中国、日本、印度、德国这些首次开展月球探测的国家,公布的规划有着惊人的相似,几乎都是走“绕”“落”“回”的路线。第三,中国、日本、印度、德国开展首次绕月探测的科学目标基本一致,都包含了绘制月球全图、月球资源调查、地月环境探测等主要目标。第四,这些国家开展月球探测活动的最终目标有所不同。根据这种不同,可以将目前开展月球探测的国家划分成两个集团。第一个集团是美、俄和欧空局,他们都明确地将载人登月、建立有人长期驻扎的月球基地作为目标。第二个集团是日本、印度、德国和我国等首次开展月球探测的国家,这些国家处于月球探测的起步阶段,积累经验、发展技术是首要目标。第五,首次探月的各国基本目标相似,但又各有创意,体现出了各国科学家的想象力。我们的嫦娥一号将在世界上首次利用微波的方法探测月壤特性;日本的Selene—1探测器携带了两个子探测器在世界上首次探测月球背面的重力场;而印度在探测器小型化方面做得很有特色。 
参考资料:中国测绘新闻网 

新华网北京3月4日电(记者齐湘辉 秦大军)全国政协委员、载人航天火箭系统顾问组组长、“神舟”五号火箭总指挥黄春平4日接受新华社记者专访表示,“神舟”七号”发射时间将推迟半年左右,原定2007年的发射计划将拖后到2008年。 

黄春平说,发射计划延期,“并不是出了什么问题,而是工作周期决定。”“神舟”七号火箭每一个部件都需要经过复杂的工作周期,首先要进行单样技术攻关,攻关合格后再设定方案、原理考核,之后进入抽样阶段。这一阶段要解决两方面的任务,一是要通过性能指标测试,二是原材料、加工等工艺能力在工厂的生产能力范围内。抽样合格后,再修改设计,做试样生产,再进行产品实验,最后进入工厂生产。此外,还要请相关专家进行测评。因此,“这是一个复杂的工程,要一步一个脚印,不能急于求成。” 

黄春平介绍,与神五、神六不同,“神舟”七号火箭在研制上的关键点是宇航服和气门闸。因为“神舟”七号将实现太空行走,航天员能否从舱内气压骤然适应真空环境,气门闸和宇航服扮演了重要角色。 

“目前,‘神舟’七号的其他部件都差不多了,只有宇航服还要攻关,宇航服的研究进度决定了神七进度。”黄春平又补充说,“不过,中国完全有能力解决。” 

黄春平说,为了适应真空的环境,“神舟”七号宇航服从气密、通信、排泄、通讯、电源、活动关节等各方面,都要比神六有较大提高。 

据黄春平预测,“神舟”七号将有三名航天员,一个要出舱行走,一个在轨道舱迎接,返回舱还要留人。出舱活动将有行走、操作、拧螺钉等安装设备等项目,为今后建立太空空间站作准备 
根据中国探月卫星工程的四大科学目标,嫦娥1号选用的有效载荷有6套24件,包括CCD立体相机、激光高度计、成像光谱仪、伽马/X射线谱仪、微波探测仪和太阳风粒子探测器等。其中CCD立体相机是拍摄全月面三维影像的专用相机,在中国属首次使用;成像光谱仪用于获取月面光波图谱;伽马/X射线谱仪用于探测月球表面元素;微波探测仪除用于获取月壤厚度信息外,还能给出月球背面的亮度温度图和月球两极地面的信息。 

由激光器、望远镜和接收电路三部分组成的激光高度计,由中科院上海技术物理研究所研制。它在探月卫星的发射阶段和转移阶段都处在“睡眠状态”。卫星进入环月轨道后,激光高度计首先向月面发射激光束,并立刻用望远镜把反射回来的光束变成电信号;接着,接收电路盒将迅速进行精确计算,用最短时间得出该探测点的月球海拔高度。激光高度计完成绕月旅行,月面每个探测点的海拔高度就一清二楚了。这些数值一旦与CCD立体相机拍摄的平面图像相叠加,就是一幅完整而精确的月面三维地形图。只要激光高度计发射的探测点足够密,就能获得覆盖整个月球的地形图,包括人类探月活动从未涉及的月球两极区域。 

据探月专家介绍,美国、欧空局、俄罗斯和日本等以前从未在探月过程中使用过可以全天候、全天时工作和具有一定穿透能力的微波遥感技术,所以嫦娥1号上的微波探测仪是世界上首次在探月卫星上装载微波遥感装置,用以实现对月面更为细致深入的探测,并将对所发回的数据进行反演和解析。不过,由于月球远离地球,对月球进行微波遥感探测有很大的技术难度和一定的风险。为确保探测成功和能稳定地发回数据,现正加强对月球微波遥感的地面仿真研究,在借鉴以往经验的基础上做相应的技术改进。 

嫦娥1号有效载荷共重130千克。早在2004年1月7日,所有24件仪器就完成了首轮联合测试,结果相当成功。测试表明,探测仪器设计中的一些关键技术问题已基本攻克,并解决了设备间的接口技术。全部探测仪器于2004年9月交付,并与卫星平台一起进行噪声、振动、辐射和真空等各种空间环境的模拟测试。 

使用成熟的火箭 

按照计划,长征3号甲被选为月球探测卫星的运载火箭,发射场选在西昌卫星发射中心,但要进行必要的适应性改造。 

根据设计,嫦娥1号的运行轨道近地点为200千米,远地点为51000千米,属于大椭圆轨道。火箭必须精确地将探测器送入预定轨道,才能准确完成预定探测任务。为满足探月卫星的特殊要求,长征3号甲火箭控制系统增加了单机和线路备份,确保飞行过程中不出现任何偏差,万无一失。 

选择长征3号甲主要考虑到它是长征系列火箭家族中发射成功率最高的成员之一。该火箭拥有更灵活而先进的控制系统,可在星箭分离前对有效载荷进行大姿态调姿定向,并提供可调整的卫星起旋速率,具有很强的适应性。它主要用于发射地球同步轨道有效载荷,同时兼顾低轨道和太阳同步轨道等其它轨道有效载荷的发射,也可进行一箭双星或多星发射。 

目前执行发射任务的长征3号甲火箭已进入试样研制阶段,部分组件和箭体已开始投产。但由于月球探测器尚处于初样设计阶段,今后研制人员还将根随着探测器研制的深入,逐步对火箭设计进行适应性修改,预计将于两年后出厂。 

嫦娥1号发射时间的选择要考虑到光照、太阳入射角、测控条件和轨道限制等因素。发射后,卫星将用8~9天时间完成调相轨道段、地-月转移轨道段和环月轨道段飞行。在经过发射、飞行和进入预定轨道等程序后,如何将探测数据传回地面,是工程的技术难题。 

嫦娥1号工程副总设计师龙乐豪说,通俗一点讲,该工程有三大目标,即“到得了”、“转得起”和“传得到”。嫦娥1号从起飞到进入目标轨道将多次经过中国上空。如地理位置和天气条件允许,人们有可能用肉眼观测到现代“嫦娥奔月”的情景。 

测控和应用系统 

由于旅途遥远,所以测控系统尤为重要。测控系统将以中国现有的S频段航天测控网为主,辅以甚长基线干涉仪天文测量系统组成,并进行必要的适应性改造。 

嫦娥1号卫星不仅需要对月球进行全天候的观测,还需要把太阳能电池板始终对准太阳,同时又要把传送天线对准地球。目前,中国在上海佘山和乌鲁木齐分别拥有一个直径25米的天线,但它们只能有4~6小时可用来接收星上信息。为了嫦娥1号计划的顺利实施,中国将分别在北京和昆明设一个直径50米(国内最大)和一个直径40米的天线。这样在我们的国土上,可用4个天线交叉干涉,对近40万千米远的嫦娥1号进行测控,并为应对外界干扰因素和意外因素留有应急的能量。 

地面应用系统包括月球探测卫星运行管理中心、数据接收中心以及科学数据处理和研究中心三个部分。 

四大难关 

虽然卫星和火箭采用成熟技术,但还是要攻克一些技术难点。中国航天器已到达的距地球最远距离为7万千米,而月球距地球达38万千米。而且月球以及月球与地球和太阳的相对关系具有其固有的特点,所以月球探测卫星与一般的地球卫星有很大不同。 

据权威人士介绍,研制和发射嫦娥1号探月卫星的技术难点主要有4点: 

一是轨道设计与控制。它是实现月球探测卫星绕月飞行的基本保证。在飞往月球轨道的过程中,月球卫星既不能碰着月球,也不能飞过去,因此轨道设计和控制是一个新问题。必须正确认识月球卫星轨道设计的客观规律,寻找合理的工程实施途径。 

二是测控和数据传输。地月相距遥远,测控信号的空间衰减明显增大。同时为实现卫星绕月飞行,需经历复杂的轨道转移过程,其间的测控任务对星上和地面测控系统提出了更高要求。38万千米外的探测带来卫星天线怎么设计和地面站怎么设计等问题。 

三是制导、导航与控制。月球探测卫星从绕地飞行到准确进入绕月飞行轨道,需经历多次复杂的轨道和姿态机动,要求控制精度高和实时性强。卫星对地观测是两体定向,即太阳帆板对日定向,观测设备和测控通信设备对地定向,以观测和传输信息。而绕月卫星是三体定向,即太阳帆板对日,观测设备对月,测控通信设备对地。三体定向问题要复杂得多。 

四是热控技术。卫星绕着月球转,月球绕着地球转,地球又带着月球和月球旁的卫星绕着太阳转,相对关系比较复杂,从而导致绕月卫星的热变化巨大。而我们只能给嫦娥1号穿一件“衣服”,不能换。这件“衣服”要做到热的时候不热,冷的时候不冷,这是个难题。由于要经历复杂的热环境,热控技术必须适应复杂的外部温度变化,以保证星上所有设备处在正常的工作温度范围。