什么是斐波纳契数列?

2024-05-16

1. 什么是斐波纳契数列?

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

什么是斐波纳契数列?

2. 什么是斐波纳契数列

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推珂以列出下表:
所经过月数:0123456789101112
兔子对数:1123581321345589144233
表中数字1,1,2,3,5,8---构成了一个序列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2)
n-(1-√5/2)
n](n=1,2,3.....)
这个通项公式中虽然所有的an都是正整数,可是它们却是由一些无理数表示出来的。

3. 斐波那契数列的公式是什么

斐波那契数列:1,1,2,3,5,8,13,21…… 

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1

n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1) 

那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

斐波那契数列的公式是什么

4. 斐波那契数列怎么计算

递归法:
F(1)=0,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N)

公式法:

5. 斐波那契数列怎么算???

它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数) 
并不是所有的数列都可以求。 
但是Fibanocci数列是可以求通项公式的。 
a(n+2)=a(n+1)+an 
如果能做到: 
a(n+2)-ka(n+1)=q(a(n+1)-kan)就好办了。 
这应该没问题的,待定系数求k,q
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34…… 
  这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 
通项是两个等比数通项之差.
求和公式就是两个等比数列求和公式之差

斐波那契数列怎么算???

6. 斐波那契数列的公式是什么?

这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列。该数列由下面的递推关系决定: 
F0=0,F1=1 
Fn+2=Fn + Fn+1(n>=0) 
它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)

补充问题:
菲波那契数列指的是这样一个数列: 
1,1,2,3,5,8,13,21…… 
这个数列从第三项开始,每一项都等于前两项之和 
它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】 
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 

该数列有很多奇妙的属性 
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1 
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值

仅供参考。

7. 什么是斐波契那数列?

菲波拉契数 

  十三世纪初,义大利出版了本研究算术和代数的书籍>,它是当时欧洲人推广阿拉伯数字的重要书籍。数学家菲波拉契在书中提出一个乐趣的题目:「假设一对兔子成配偶后,在二个月时便可以生下一对(一雌一雄)兔子。以后,每过足一个月可以生下另一对兔子,如果每只兔子都能健康存活,一年之后,会有多少对兔子呢?」 

第1个月:只有一对兔子a。 
第2个月:仍只一对兔子a。 
第3个月:a生下一对兔子b,共有2对兔子。 
第4个月:a又生下一对兔子c,加上一对兔子b,共有3对兔子。 
第5个月:a又生下一对兔子d,而这对兔子b也生下一对兔子e,加上一对兔子c,共有5对兔子。 
第6个月:a又生下一对兔子f,而这对兔子c也生下一对兔子g,同时这对兔子b也生下一对兔子h,加上一对兔子d和一对兔子e,共有8对兔子。 

  如此下去,每个月兔子的成对个数分别是1,1,2,3,5,8,13,21,.......。这数列我们称之为斐波拉契数列。 

  如果斐波拉契数列的第n项以fn表示,则fn+1=fn+fn-1,这个关系式到了1634年才由数学家齐拉特提出。1680年卡希尼找到关系式:fn+1×fn-1-fn2=(-1)n。

什么是斐波契那数列?

8. 斐波拉契数列是怎么推算出来的?

13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。书中有许多有趣的数学题,其中最有趣的是下面这个题目:
“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”
推算一下兔子的对数是很有意思的。为了叙述更有条理,我们假设最初的一对兔子出生在头一年的12月份。显然,1月份里只有1对兔子;到2月份时,这对兔子生了1对小兔,总共有2对兔子;在3月份里,这对兔子又生了1对小兔,总共有3对小兔子;到4月份时,2月份出生的兔子开始生小兔了,这个月共出生了2对小兔,所以共有5对兔子;在5月份里,不仅最初的那对兔子和2月份出生的兔子各生了1对小兔,3月份出生的兔子也生了1对小兔,总共出生了3对兔子,所以共有8对兔子……
照这样继续推算下去,当然能够算出题目的答案,不过,斐波拉契对这种方法很不满意,他觉得这种方法太繁琐了,而且越推算到后面情况越复杂,稍一不慎就会出现差错。于是他又深入探索了题中的数量关系,终于找到了一种简捷的解题方法。
斐波拉契把推算得到的头几个数摆成一串。
1,1,2,3,5,8……
这串数里隐含着一个规律,从第3个数起,后面的每个数都是它前面那两数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。
这样,要知道1年后兔子的对数是多少,也就是看这串数的第13个数是多少。由5+8=13,8+13=21,13+21=34,21+34=55,34+55=89,55+89=144,89+144=233,不难算出题目的答案是233对。
按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”。这个数列有许多奇特的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近0.618,正好与大名鼎鼎的“黄金分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。
最新文章
热门文章
推荐阅读