权重初始化初始的是整个神经网络的权重吗

2024-05-15

1. 权重初始化初始的是整个神经网络的权重吗

说的确定应该就是训练方法吧,神经网络的权值不是人工给定的。而是用训练集(包括输入和输出)训练,用训练集训练一遍称为一个epoch,一般要许多epoch才行,目的是使得目标与训练结果的误差(一般采用均方误差)小到一个给定的阈值。以上所说是有监督的学习方法,还有无监督的学习方法。

权重初始化初始的是整个神经网络的权重吗

2. 关于keras构建的神经网络的输出结果解释

ETA:Estimated Time of Arrival。Loss:系统的损失。acc:Accuracy正确率。

3. 神经网络算法三个权重到四个权重怎么用

你说的确定应该就是训练方法吧,神经网络的权值不是人工给定的。而是用训练集(包括输入和输出)训练,用训练集训练一遍称为一个epoch,一般要许多epoch才行,目的是使得目标与训练结果的误差(一般采用均方误差)小到一个给定的阈值。以上所说是有监督的学习方法,还有无监督的学习方法。

神经网络算法三个权重到四个权重怎么用

4. 神经网络修改权重后,下一次使用新的输入值吗

是的,按照样本顺序一轮一轮进行训练,调整权值。全部样本都要算一遍。按照顺序依次抽取样本,代入BP算法,调整权值。也有部分算法是按随机方式,每次样本进来的顺序都不同,但仍然是所有样本都要参与。
实际上现在有两种方法,一种是标准BP算法中,每输入一个样本,都要回传误差并调整权值,这种对每个样本轮训的方法称为“单样本训练”。由于单样本训练遵循的是只顾眼前的“本位主义”原则,只针对每个样本产生的误差进行调整,难免顾此失彼,使训练次数增加,导致收敛速度过慢。因此,有另外一种方法,就是在所有样本输入之后,计算网络的总误差,再根据总误差调整权值,这种累积误差的批处理方式称为“批训练”或“周期训练”。在样本数较多时,批训练比单样本训练的收敛速度更快。

5. keras 损失函数什么时候调用

keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数...#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD

keras 损失函数什么时候调用

6. 如何从零开发一个复杂深度学习模型

Keras 是提供一些高可用的 Python API ,能帮助你快速的构建和训练自己的深度学习模型,它的后端是 TensorFlow 或者 Theano 。本文假设你已经熟悉了 TensorFlow 和卷积神经网络,如果,你还没有熟悉,那么可以先看看这个10分钟入门 TensorFlow 教程和卷积神经网络教程,然后再回来阅读这个文章。
在这个教程中,我们将学习以下几个方面:
为什么选择 Keras?为什么 Keras 被认为是深度学习的未来?
在Ubuntu上面一步一步安装Keras。
Keras TensorFlow教程:Keras基础知识。
了解 Keras 序列模型
4.1 实际例子讲解线性回归问题
使用 Keras 保存和回复预训练的模型
Keras API
6.1 使用Keras API开发VGG卷积神经网络
6.2 使用Keras API构建并运行SqueezeNet卷积神经网络
1. 为什么选择Keras?
Keras 是 Google 的一位工程师François Chollet 开发的一个框架,可以帮助你在 Theano 上面进行快速原型开发。后来,这被扩展为 TensorFlow 也可以作为后端。并且最近,TensorFlow决定将其作为 contrib 文件中的一部分进行提供。
Keras 被认为是构建神经网络的未来,以下是一些它流行的原因:
轻量级和快速开发:Keras 的目的是在消除样板代码。几行 Keras 代码就能比原生的 TensorFlow 代码实现更多的功能。你也可以很轻松的实现 CNN 和 RNN,并且让它们运行在 CPU 或者 GPU 上面。
框架的“赢者”:Keras 是一个API,运行在别的深度学习框架上面。这个框架可以是 TensorFlow 或者 Theano。Microsoft 也计划让 CNTK 作为 Keras 的一个后端。目前,神经网络框架世界是非常分散的,并且发展非常快。具体,你可以看看 Karpathy 的这个推文:

想象一下,我们每年都要去学习一个新的框架,这是多么的痛苦。到目前为止,TensorFlow 似乎成为了一种潮流,并且越来越多的框架开始为 Keras 提供支持,它可能会成为一种标准。
目前,Keras 是成长最快的一种深度学习框架。因为可以使用不同的深度学习框架作为后端,这也使得它成为了流行的一个很大的原因。你可以设想这样一个场景,如果你阅读到了一篇很有趣的论文,并且你想在你自己的数据集上面测试这个模型。让我们再次假设,你对TensorFlow 非常熟悉,但是对Theano了解的非常少。那么,你必须使用TensorFlow 对这个论文进行复现,但是这个周期是非常长的。但是,如果现在代码是采用Keras写的,那么你只要将后端修改为TensorFlow就可以使用代码了。这将是对社区发展的一个巨大的推动作用。
2. 怎么安装Keras,并且把TensorFlow作为后端
a) 依赖安装
安装 h5py,用于模型的保存和载入:
pip install h5py
还有一些依赖包也要安装。
pip install numpy scipy
pip install pillow
如果你还没有安装TensorFlow,那么你可以按照这个教程先去安装TensorFlow。一旦,你安装完成了 TensorFlow,你只需要使用 pip 很容易的安装 Keras。
sudo pip install keras
使用以下命令来查看 Keras 版本。
>>> import keras
Using TensorFlow backend.
>>> keras.__version__
'2.0.4'
一旦,Keras 被安装完成,你需要去修改后端文件,也就是去确定,你需要 TensorFlow 作为后端,还是 Theano 作为后端,修改的配置文件位于 ~/.keras/keras.json 。具体配置如下:
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}
请注意,参数 image_data_format 是 channels_last ,也就是说这个后端是 TensorFlow。因为,在TensorFlow中图像的存储方式是[height, width, channels],但是在Theano中是完全不同的,也就是 [channels, height, width]。因此,如果你没有正确的设置这个参数,那么你模型的中间结果将是非常奇怪的。对于Theano来说,这个参数就是channels_first。
那么,至此你已经准备好了,使用Keras来构建模型,并且把TensorFlow作为后端。
3. Keras基础知识
在Keras中主要的数据结构是 model ,该结构定义了一个完整的图。你可以向已经存在的图中加入任何的网络结构。
import keras
Keras 有两种不同的建模方式:
Sequential models:这种方法用于实现一些简单的模型。你只需要向一些存在的模型中添加层就行了。
Functional API:Keras的API是非常强大的,你可以利用这些API来构造更加复杂的模型,比如多输出模型,有向无环图等等。
在本文的下一节中,我们将学习Keras的Sequential models 和 Functional API的理论和实例。
4. Keras Sequential models
在这一部分中,我将来介绍Keras Sequential models的理论。我将快速的解释它是如何工作的,还会利用具体代码来解释。之后,我们将解决一个简单的线性回归问题,你可以在阅读的同时运行代码,来加深印象。
以下代码是如何开始导入和构建序列模型。
from keras.models import Sequential
models = Sequential()
接下来我们可以向模型中添加 Dense(full connected layer),Activation,Conv2D,MaxPooling2D函数。
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Dropout
model.add(Conv2D(64, (3,3), activation='relu', input_shape = (100,100,32)))
# This ads a Convolutional layer with 64 filters of size 3 * 3 to the graph
以下是如何将一些最流行的图层添加到网络中。我已经在卷积神经网络教程中写了很多关于图层的描述。
卷积层
这里我们使用一个卷积层,64个卷积核,维度是33的,之后采用 relu 激活函数进行激活,输入数据的维度是 `100100*32`。注意,如果是第一个卷积层,那么必须加上输入数据的维度,后面几个这个参数可以省略。
model.add(Conv2D(64, (3,3), activation='relu', input_shape = (100,100,32)))
MaxPooling 层
指定图层的类型,并且指定赤的大小,然后自动完成赤化操作,酷毙了!
model.add(MaxPooling2D(pool_size=(2,2)))
全连接层
这个层在 Keras 中称为被称之为 Dense 层,我们只需要设置输出层的维度,然后Keras就会帮助我们自动完成了。
model.add(Dense(256, activation='relu'))
Dropout
model.add(Dropout(0.5))
扁平层
model.add(Flatten())
数据输入
网络的第一层需要读入训练数据。因此我们需要去制定输入数据的维度。因此,input_shape参数被用于制定输入数据的维度大小。
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(224, 224, 3)))
在这个例子中,数据输入的第一层是一个卷积层,输入数据的大小是 224*224*3 。
以上操作就帮助你利用序列模型构建了一个模型。接下来,让我们学习最重要的一个部分。一旦你指定了一个网络架构,你还需要指定优化器和损失函数。我们在Keras中使用compile函数来达到这个功能。比如,在下面的代码中,我们使用 rmsprop 来作为优化器,binary_crossentropy 来作为损失函数值。
model.compile(loss='binary_crossentropy', optimizer='rmsprop')
如果你想要使用随机梯度下降,那么你需要选择合适的初始值和超参数:
from keras.optimizers import SGD
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
现在,我们已经构建完了模型。接下来,让我们向模型中输入数据,在Keras中是通过 fit函数来实现的。你也可以在该函数中指定 batch_size 和 epochs 来训练。
model.fit(x_train, y_train, batch_size = 32, epochs = 10, validation_data(x_val, y_val))
最后,我们使用 evaluate 函数来测试模型的性能。
score = model.evaluate(x_test, y_test, batch_size = 32)
这些就是使用序列模型在Keras中构建神经网络的具体操作步骤。现在,我们来构建一个简单的线性回归模型。
4.1 实际例子讲解线性回归问题
问题陈述
在线性回归问题中,你可以得到很多的数据点,然后你需要使用一条直线去拟合这些离散点。在这个例子中,我们创建了100个离散点,然后用一条直线去拟合它们。
a) 创建训练数据
TrainX 的数据范围是 -1 到 1,TrainY 与 TrainX 的关系是3倍,并且我们加入了一些噪声点。
import keras
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
trX = np.linspace(-1, 1, 101)
trY = 3 * trX + np.random.randn(*trX.shape) * 0.33
b) 构建模型
首先我们需要构建一个序列模型。我们需要的只是一个简单的链接,因此我们只需要使用一个 Dense 层就够了,然后用线性函数进行激活。
model = Sequential()
model.add(Dense(input_dim=1, output_dim=1, init='uniform', activation='linear'))
下面的代码将设置输入数据 x,权重 w 和偏置项 b。然我们来看看具体的初始化工作。如下:
weights = model.layers[0].get_weights()
w_init = weights[0][0][0]
b_init = weights[1][0]
print('Linear regression model is initialized with weights w: %.2f, b: %.2f' % (w_init, b_init))
## Linear regression model is initialized with weight w: -0.03, b: 0.00
现在,我们可以l利用自己构造的数据 trX 和 trY 来训练这个线性模型,其中 trY 是 trX 的3倍。因此,权重 w 的值应该是 3。
我们使用简单的梯度下降来作为优化器,均方误差(MSE)作为损失值。如下:
model.compile(optimizer='sgd', loss='mse')
最后,我们使用 fit 函数来输入数据。
model.fit(trX, trY, nb_epoch=200, verbose=1)
在经过训练之后,我们再次打印权重:
weights = model.layers[0].get_weights()
w_final = weights[0][0][0]
b_final = weights[1][0]
print('Linear regression model is trained to have weight w: %.2f, b: %.2f' % (w_final, b_final))
##Linear regression model is trained to have weight w: 2.94, b: 0.08
正如你所看到的,在运行 200 轮之后,现在权重非常接近于 3。你可以将运行的轮数修改为区间 [100, 300] 之间,然后观察输出结构有什么变化。现在,你已经学会了利用很少的代码来构建一个线性回归模型,如果要构建一个相同的模型,在 TensorFlow 中需要用到更多的代码。
5. 使用 Keras 保存和回复预训练的模型
HDF5 二进制格式
一旦你利用Keras完成了训练,你可以将你的网络保存在HDF5里面。当然,你需要先安装 h5py。HDF5 格式非常适合存储大量的数字收,并从 numpy 处理这些数据。比如,我们可以轻松的将存储在磁盘上的多TB数据集进行切片,就好像他们是真正的 numpy 数组一样。你还可以将多个数据集存储在单个文件中,遍历他们或者查看 .shape 和 .dtype属性。
如果你需要信心,那么告诉你,NASA也在使用 HDF5 进行数据存储。h5py 是python对HDF5 C API 的封装。几乎你可以用C在HDF5上面进行的任何操作都可以用python在h5py上面操作。

7. keras 模型预测的结果为什么自动从大到小排序了

另外,训练误差是训练数据每个batch的误差的平均。在训练过程中,每个epoch起始时的batch的误差要大一些,而后面的batch的误差要小一些。另一方面,每个epoch结束时计算的测试误差是由模型在epoch结束时的状态决定的,这时候的网络将产生较小的误差。
可以通过定义回调函数将每个epoch的训练误差和测试误差并作图,如果训练误差曲线和测试误差曲线之间有很大的空隙,说明你的模型可能有过拟合的问题。当然,这个问题与Keras无关。

keras 模型预测的结果为什么自动从大到小排序了