斐波那契数列的介绍

2024-05-14

1. 斐波那契数列的介绍

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci1)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

斐波那契数列的介绍

2. 请问斐波那契数列有什么实际应用价值

斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。   另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

3. 斐波那契数列在生活中有哪些典型的应用

1、斐波那契数可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子,直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。





2、树木的生长。由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。




与黄金分割关系
有趣的是,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。
1÷1=1,1÷2=0.5,2÷3=0.666.。。,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886…。
越到后面,这些比值越接近黄金比。
证明
a[n+2]=a[n+1]+a[n]。两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]。若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n-》;;∞](a[n+2]/a[n+1])=lim[n-》;;∞](a[n+1]/a[n])=x。所以x=1+1/x。即x²=x+1。所以极限是黄金分割比。

斐波那契数列在生活中有哪些典型的应用

4. 斐波那契数列的应用是什么?

(1)斐波那契数列与排列组合
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法。
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1、2、3、5、8、13、21……所以,登上10级台阶总共有89种登法。

(2)斐波那契数列与与黄金分割的关系
有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618。
(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618),越到后面,这些比值越接近黄金比.
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………,144÷233=0.618025…,46368÷75025=0.6180339886…,...
(3)斐波那契螺旋线
以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。自然界中存在许多斐波那契螺旋线的图案。

斐波那契数列在自然界的体现:
(1)树木的分叉
树苗在第一年后长出一条新枝,新枝成长一年后变为老枝,老枝每年都长出一个新枝,以后每个树枝都遵循这样的规律,于是第一年只有一个主干,第二年有两个枝,第三年三个,第四年五个,以此类推,每年的分枝数便构成了斐波那契数列。
(2)花瓣的数量

有很多花瓣也都遵循斐波那契数列,比如:兰花,雏菊,延龄草,野玫瑰,大波斯菊,金凤花,百合花,蝴蝶花,紫苑,南美血根草等等。
以上内容参考 百度百科-斐波那契数列

5. 斐那波契数列

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。
随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……

起源
1202年数学家菲波那契提出了一个著名的兔子问题:假定一对兔子从第三个月起逐月生一对一雌一雄的小兔,每对小兔在两个月后也逐月生一对一雌一雄的小兔,…。问一年之后兔房里共有多少对兔子?   菲波那契是这样来考虑的:设第n个月后兔房里的兔子数为an对,这an应由以下两部分组成:一部分是第n﹣1个月时已经在兔房里的兔子,它们有an﹣1对;另一部分是第n个月中新出世的,而这部分应有第n﹣2个月时兔房里的兔子所生,有a n﹣2对。   ∴有递推关系式(An+1)=(An)+(An-1)(n∈N且n>2),且易知A1=A2 =1。由这个递推关系式可以得到一年后的兔子对数A12=141。这也是递推方法应用的一个最著名的例子。   按照如上的递推,菲波拉契数列前几项如下:   1 1 2 3 5 8 13 21……   从数学上,该数列也是可以推导出通项公式的,其通项公式推导如下:   (An+1)=(An)+(An-1),将An项分解为(((1+√5)/2)+((1-√5)/2))(An),然后移项,得到下式:   (An+1)-((1+√5)/2)(An)=((1-√5)/2)(An)+(An-1)   即(An+1)-((1+√5)/2)(An)=((1-√5)/2)((An)-((1+√5)/2)(An-1))   即新数列{(An)+((1+√5)/2)(An-1)}是以((1-√5)/2)为首项,((1-√5)/2)为公比的等比数列   即(An)-((1+√5)/2)(An-1)=((1-√5)/2)^n   即(An)=((1+√5)/2)(An-1)+((1-√5)/2)^n   两边同时除以((1+√5)/2)^n,得又一新数列(Bn)=(Bn-1)+(((1-√5)/2)^n)/(((1+√5)/2)^(n+1))   其中,(Bn)=An/(((1+√5)/2)^n)   依次递归,得到(Bn)=((1+√5)/2)^(-1)+2*(((1-√5)/(1+√5)^2)+(((1-√5)^2)/(1+√5)^3)+……+(((1-√5)^(n-1))/(1+√5)^n))   将Bn带入,化简,得到An=((((1+√5)/2)^n)-(((1-√5)/2)^n))/(√5)   (注√表示根号)   该数列有以下几个性质:   1.随着数列项数的增加,前一项与后一项之比越逼近黄金分割比   2.从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1   3.如果任意挑两个数为起始,按照菲波拉契数列的形势递推下去,随着数列的发展,前后两项之比也越来越逼近黄金分割比,且某一项的平方与前后两项之积的差值也交替相差某个值(菲波拉契数列的推广)。

斐那波契数列

6. 什么是斐波那契数列?能举个例子嘛?

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)。
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........
这个数列从第3项开始,每一项都等于前两项之和。

7. 斐波那契数列在生活中有哪些典型的应用

1、斐波那契数可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子,直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。





2、树木的生长。由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。




与黄金分割关系
有趣的是,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。
1÷1=1,1÷2=0.5,2÷3=0.666.。。,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886…。
越到后面,这些比值越接近黄金比。
证明
a[n+2]=a[n+1]+a[n]。两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]。若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n-》;;∞](a[n+2]/a[n+1])=lim[n-》;;∞](a[n+1]/a[n])=x。所以x=1+1/x。即x²=x+1。所以极限是黄金分割比。

斐波那契数列在生活中有哪些典型的应用

8. 类斐波那契数列

原斐波那契数列:1,1,2,3,5,8,13,21,34,55,……
即第三项及以后的项等于前两项之和,(an+2)=(an+1)+(an),类似的有:
①1,2,3,5,8,13,…
②5,9,14,23,37,……
③61,72,133,205,……
④15,-8,7,-1,6,5,11,……
⑤-3,-6,-9,-15,-24,-39,……
望采纳,谢谢!