HIT太阳能电池,什么是HIT太阳能电池

2024-05-14

1. HIT太阳能电池,什么是HIT太阳能电池

答:(1)用户太阳能电源:——小型电源10~100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等。——3~5KW家庭屋顶并网发电系统。——光伏水泵:解决无电地区的深水井饮用、灌溉。(2)交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。(3)通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。(4)石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活及应急电源、海洋检测设备、气象/水文观测设备等。(5)家庭灯具电源:如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、黑光灯、割胶灯、节能灯等。(6)光伏电站:10KW~50MW独立光伏电站、风光(柴)互补电站、各种大型停车厂充电站等。(7)太阳能建筑:将太阳能发电与建筑材料相结合,使得未来的大型建筑实现电力自给,是未来一大发展方向。(8)其他领域包括:——与汽车配套:太阳能汽车/电动车、电池充电设备、汽车空调、换气扇、冷饮箱等。——太阳能制氢加燃料电池的再生发电系统。——海水淡化设备供电。——卫星、航天器、空间太阳能电站等。

HIT太阳能电池,什么是HIT太阳能电池

2. 太阳能电池的原理及结构是什么

太阳能的光电转换单元是半导体电池,常见的有硅电池和硒电池,其中硅电池比较普遍,它最稳定,而且光谱特性宽,主要波段在可见光范围。一个单元的硅电池最大开路电压500毫伏(和面积无关),短路电流在10k流明时为20mA/平方厘米。另外光电池的伏安特性还很受温度影响。 
为了达到更大的电压和电流输出从而获得更高的功率,要将多组硅电池单元串联并联。 
光电池结构很简单,组装也不麻烦,不过要获得稳定的输出,还需要做稳压电路。关键看你是何种应用了。

3. HIT电池是什么?

什么是HIT电池?相关概念股为何被市场炒作?投资者应注意些什么?原油上涨,新能源等符合行业发展前景,但投机炒作概念风险较大,注意龙头股得动态!

HIT电池是什么?

4. “太阳能电池”的基本特性是什么?

太阳能电池的基本特性1、太阳能电池的极性
硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。
2、太阳电池的性能参数
太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。
3、太阳能电池的伏安特性
P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,小于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。
太阳能电池
【基本概念】
太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏,简称光伏。
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的晶硅太阳能电池为主流,而以光化学效应工作的薄膜电池实施太阳能电池则还处于萌芽阶段。
【原理】
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

5. 太阳能光伏 hit 是什么东西

异质结(Heterojunctionwith Intrinsic Thinfilm(HIT))太阳能电池,HIT电池与传统电池最大的区别就是非晶硅与晶体硅构成的异质结结构。通过设计异质结界面的势垒高度获得合适的能带结构,以提高电池的转换效率。

太阳能光伏 hit 是什么东西

6. 太阳能电池的基本特性是什么?

太阳能电池的基本特性1、太阳能电池的极性
硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。
2、太阳电池的性能参数
太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。
3、太阳能电池的伏安特性
P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,小于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。
太阳能电池
【基本概念】
太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏,简称光伏。
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的晶硅太阳能电池为主流,而以光化学效应工作的薄膜电池实施太阳能电池则还处于萌芽阶段。
【原理】
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

7. HIT电池生产流程

HIT电池简介
HIT是Heterojunction with Intrinsic Thin-layer的缩写,意为本征薄膜异质结.  HIT太阳能电池是以光照射侧的p/i型a-Si膜(膜厚5~10nm)和背面侧的i/n型a-Si膜(膜厚5~10nm)夹住单结晶Si片的来构成的.
图一.
 
电池基板以硅基板为主;在硅基板上沉积高能隙 (Energy band gap)的硅奈米薄膜,表层再沉积透明导电膜,背表面有着背表面电场。
通过优化硅的表面织构,可以降低透明导电氧化层(TCO)和a-Si层的光学吸收损耗。HIT电池抑制了p型、i型a-Si的光吸收率,而增强n型c-Si的光吸收率。

图二.
 


HIT电池在技术上的优势
由于HIT太阳能电池使用a-Si构成pn结,所以能够在200℃以下的低温完成整个工序。和原来的热扩散型的结晶太阳电池的形成温度(~900℃)相比较,大幅度地降低了制造工艺的温度。由于这种对称构造和低温工艺的特征,减少了因热量或者膜形成时产生的Si晶片的变形和热损伤,对实现晶片的轻薄化和高效化来说是有利的,具有业界领先的高转换效率(研究室水平为23%,量产水平为20%),即使在高温下,转换效率也极少降低,利用双面单元来提高发电量。
HIT电池的伏安曲线分析:
HIT电池里p/n 异质结中所发现的正向电流特性(0.4V 附近)的变化是由于a-Si 顶层膜中存在的高密度间隙态,引起异质结部耗尽层的再复合而造成的。对此,在顶层和结晶Si之间插入高质量a-Si 膜(i 型a-Si 膜),通过顶层内的电场来抑制复合电流,这就是HIT 构造。通过导入约5nm 左右的薄膜i 型a-Si 层,可看到反向的饱和电流密度降低了约2个数量级。亦即通过导入i 型a-Si 层,能够大幅度提高Voc,见下图.
图三
 

化学钝化和HIT 构造的寿命关系
采用μ-PCD 法测定HIT电池的少子寿命。μ-PCD 法得到的寿命值虽然同时反映了体复合速度和表面复合速度两方面,但由于是在同一批(LOT)里抽出相邻的芯片,所以可认为体(BULK)的影响基本相同,所不同的是表面的差异。根据下图可以发现,HIT 构造的钝化性能要比化学钝化(CP 法)更优异。
图四
 
                           化学钝化
HIT 太阳能电池的Voc 和寿命之间的依存性
发现通过形成低损伤的a-Si膜和提高表面的清净度等可以提高寿命和Voc,Voc 和寿命之间是一种正的线性关系。即HIT构造中的a-Si 钝化性能的好坏和HIT 太阳电池的Voc 大小相关。所以,通过提高a-Si 的钝化性能以提高寿命的方法可以认为对提高HIT 太阳电池的输出电压是有效的。
图五
 
HIT电池单晶体硅的表面清洁度更高,同时抑制了非晶硅层形成时对单晶体硅表面产生的损伤。通过这些改良,这种电池的电能输出功率损失下降,开路电压得到了提高。

HIT 太阳电池优异的温度特性
HIT电池Voc越高输出特性的温度依存性越小。也就是说,在HIT 太阳电池的高效率化技术中的这种钝化技术的开发(即高Voc 化)带来了温度特性的提高.由于新电池在温度上升时发电量的损失降低,预计它的年发电量将比传统晶硅太阳能电池提升44%。
图六
 

HIT电池的制造工艺
HIT电池的关键技术是a-Si:H薄膜的沉积,要求说沉积的本征a-Si:H薄膜的缺陷态密度低,掺杂a-Si:H的掺杂效率高且光吸收系数低,最重要的是最终形成的a-Si:H/Si界面的态密度要低。目前,普遍采用的等离子体增强化学气相沉积法(PECVD)沉积本征及掺杂的a-Si:H膜,同时热丝化学气相沉积发(HWCVD)制备a-Si:H法也被认为很有前景。
PECVD法制备a-Si:H薄膜
利用等离子里中丰富的活性粒子来进行低温沉积一直是a-Si:H制备的重要方法。在真空状态下给气体施加电场,气体在电场提供的能量下会有气态转变为等离子体状态。其中含有大量的电子、离子、光子和各类自由基等活性粒子。等离子体是部份离子化的气体,与普通气体相比,主要性质发生了本质的变化,是一种新物质聚集态。等离子体中放置其中的衬底可以保持在室温,而电子在电厂的激发下会得到足够多的能量(2-5eV),通过与分子的碰撞将其电离,激发。PECVD的缺点表现在两个方面,一是它的不稳定性,二是电子和离子的辐射会对所沉积的薄膜构成化学结构上的损伤。等离子体作为准中性气体,它的状态容易被外部条件的改变而发生变化。衬底表面的带电状态,反应器壁的薄膜附着,电源的波动,气体的流速都会改变活性粒子的种类和数量,并且等离子体的均匀性也难以控制,这样都会改变衬底的状态。等离子体中的离子轰击和光子辐照,除了会影响沉积膜的质量,还会影响下面的硅衬底。光谱相应的研究结果表明对于蓝光区,HIT电池的光谱相应提高,而在红光区,光谱相应变低。这说明对于本征层的钝化效果提高了蓝光光谱响应的结果,而对于硅片内部的损伤,则对红光部分,光谱相应降低,量子效率下降。对于这种情况,可以下调等离子体的功率,但是同时也会降低等离子体的稳定性。

HWCVD制备a-Si:H薄膜
热丝化学气相沉积HWCVD是利用热丝对气体进行催化和分解的软性过程,不会产生高能粒子轰击,对衬底的损伤较小,可以容易的移入或者移出沉积室,能够方便从实验室转换到生产线上。
在HIT电池中,非晶硅发射极和晶体硅之间夹着5纳米后,缺陷密度低于非晶硅的本征非晶硅薄膜。HWCVD的缺点在于非晶硅的外延可以穿透5纳米后的本征薄膜而与晶体硅直接接触,这样会导致高缺陷,这样界面面积和缺陷态密度的增大会导致高的暗电流,继而开路电压也会减低。在制备中将温度控制在200度以下能够抑制非晶硅的外延。

HIT电池工艺的改良方向
提高界面钝化效果
当非晶硅和晶体硅的界面陷阱密度由10^11每平方厘米上升到10^12每平方厘米时,电池效率会降低20%。本征非晶硅的钝化效果由于a-Si:H薄膜的存在而变差,这可能是衬底中的少子波函数穿过本征非晶硅而和a-Si:H薄膜中的缺陷态相互作用,这样构成了载流子的复合通道。可以使用多形硅来作为钝化层,因为它具有更低的缺陷态密度和暗电流。
光陷结构和表面清洗
将制绒后的织构表面层使用硫酸和双氧水进行氧化,然后使用使用浓度为1%的氢氟酸进行60到180秒的腐蚀,这样可以去除缺陷层来使粗糙度降低,接近抛光硅的效果。
栅电极的优化设计
如果可以去除栅线的延展部分,纵横比提高1.0以后,效率可以在提高1.6%。这取决于对于银浆的流变学研究和丝网印刷的改进。

HIT电池生产流程

8. 什么是太阳能板?它有什么特性?如何区分?

(1)单晶硅太阳能电池 
目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 

(2)多晶硅太阳能电池 
多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右 (2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。 从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 

(3)非晶硅太阳能电池 
非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。 

(4)多元化合物太阳电池 
多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种: 
a) 硫化镉太阳能电池 
b) 砷化镓太阳能电池 
c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池) 

Cu(In, Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光谱范围,进而提高光电转化效率。以它为基础可以设计出光电转换效率比硅薄膜太阳能电池明显提高的薄膜太阳能电池。可以达到的光电转化率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。