最小二乘法和梯度下降法有哪些区别

2024-05-16

1. 最小二乘法和梯度下降法有哪些区别

其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,最
小二乘法的矩阵公式是 ,这里的 A 是一个矩阵,b 是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如 ,那么,A 就是一个 的矩阵,第
i 行的数据点分别是 ,而 b 则是一个向量,其值为 .而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况 
(比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡.
相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法 (其实应该是其他一些更好的迭代方法) 更加值得被使用.

最小二乘法和梯度下降法有哪些区别

2. 最小二乘法和梯度下降法的区别

其实, 在计算量方面, 两者有很大的不同, 因而在面对给定的问题时, 可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说, 最小二乘法的矩阵公式是 , 这里的 A 是一个矩阵, b 是一个向量. 如果有离散数据点, , 而想要拟合的方程又大致形如 , 那么, A 就是一个  的矩阵, 第 i 行的数据点分别是 , 而 b 则是一个向量, 其值为 . 而又已知, 计算一个矩阵的逆是相当耗费时间的, 而且求逆也会存在数值不稳定的情况 (比如对希尔伯特矩阵求逆就几乎是不可能的). 因而这样的计算方法有时不值得提倡.
相比之下, 梯度下降法虽然有一些弊端, 迭代的次数可能也比较高, 但是相对来说计算量并不是特别大. 而且, 在最小二乘法这个问题上, 收敛性有保证. 故在大数据量的时候, 反而是梯度下降法 (其实应该是其他一些更好的迭代方法) 更加值得被使用.

当然, 其实梯度下降法还有别的其他用处, 比如其他找极值问题. 另外, 牛顿法也是一种不错的方法, 迭代收敛速度快于梯度下降法, 只是计算代价也比较高.

3. 最小二乘法和梯度下降法有哪些区别

其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,
1最小二乘法的矩阵公式是 ,这里的 A 是一个矩阵,b 是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如 ,那么,A 就是一个 的矩阵,第i 行的数据点分别是 ,而 b 则是一个向量,其值为 .而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况 (比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡.
2相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法 (其实应该是其他一些更好的迭代方法) 更加值得被使用.
3当然,其实梯度下降法还有别的其他用处,比如其他找极值问题.另外,牛顿法也是一种不错的方法,迭代收敛速度快于梯度下降法,只是计算代价也比较高.

最小二乘法和梯度下降法有哪些区别

4. 最小二乘法和梯度下降法的区别

其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,最
小二乘法的矩阵公式是 ,这里的 A 是一个矩阵,b 是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如 ,那么,A 就是一个 的矩阵,第
 i 行的数据点分别是 ,而 b 则是一个向量,其值为 .而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况 
(比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡.
相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法 (其实应该是其他一些更好的迭代方法) 更加值得被使用.
当然,其实梯度下降法还有别的其他用处,比如其他找极值问题.另外,牛顿法也是一种不错的方法,迭代收敛速度快于梯度下降法,只是计算代价也比较高.

5. 最小二乘法和梯度下降法的区别

其实,
在计算量方面,
两者有很大的不同,
因而在面对给定的问题时,
可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,
最小二乘法的矩阵公式是
,
这里的
A
是一个矩阵,
b
是一个向量.
如果有离散数据点,
,
而想要拟合的方程又大致形如
,
那么,
A
就是一个
的矩阵,
第
i
行的数据点分别是
,
而
b
则是一个向量,
其值为
.
而又已知,
计算一个矩阵的逆是相当耗费时间的,
而且求逆也会存在数值不稳定的情况
(比如对希尔伯特矩阵求逆就几乎是不可能的).
因而这样的计算方法有时不值得提倡.
相比之下,
梯度下降法虽然有一些弊端,
迭代的次数可能也比较高,
但是相对来说计算量并不是特别大.
而且,
在最小二乘法这个问题上,
收敛性有保证.
故在大数据量的时候,
反而是梯度下降法
(其实应该是其他一些更好的迭代方法)
更加值得被使用.
当然,
其实梯度下降法还有别的其他用处,
比如其他找极值问题.
另外,
牛顿法也是一种不错的方法,
迭代收敛速度快于梯度下降法,
只是计算代价也比较高.

最小二乘法和梯度下降法的区别

6. 最小二乘法和梯度下降法有哪些区别

其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,最小二乘法的矩阵公式是
,这里的
A
是一个矩阵,b
是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如
,那么,A
就是一个
的矩阵,第
i
行的数据点分别是
,而
b
则是一个向量,其值为
.而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况 
(比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡.
相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法
(其实应该是其他一些更好的迭代方法)
更加值得被使用.

7. 最小二乘法和梯度下降法有哪些区别

其实,在计算量方面,两者有很大的不同,因而在面对给定的问题时,可以有选择性的根据问题的性质选择两种方法中的一个.
具体来说,最
小二乘法的矩阵公式是
,这里的
A
是一个矩阵,b
是一个向量.如果有离散数据点,,而想要拟合的方程又大致形如
,那么,A
就是一个
的矩阵,第
i
行的数据点分别是
,而
b
则是一个向量,其值为
.而又已知,计算一个矩阵的逆是相当耗费时间的,而且求逆也会存在数值不稳定的情况
(比如对希尔伯特矩阵求逆就几乎是不可能的).因而这样的计算方法有时不值得提倡.
相比之下,梯度下降法虽然有一些弊端,迭代的次数可能也比较高,但是相对来说计算量并不是特别大.而且,在最小二乘法这个问题上,收敛性有保证.故在大数据量的时候,反而是梯度下降法
(其实应该是其他一些更好的迭代方法)
更加值得被使用.

最小二乘法和梯度下降法有哪些区别

8. 最小二乘法和梯度下降法有哪些区别?

最小二乘法的目标:求误差的最小平方和,对应有两种:线性和非线性。线性最小二乘的解是closed-form即,而非线性最小二乘没有closed-form,通常用迭代法求解。迭代法,即在每一步update未知量逐渐逼近解,可以用于各种各样的问题(包括最小二乘),比如求的不是误差的最小平方和而是最小立方和。梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。高斯-牛顿法是另一种经常用于求解非线性最小二乘的迭代法(一定程度上可视为标准非线性最小二乘求解方法)。还有一种叫做Levenberg-Marquardt的迭代法用于求解非线性最小二乘问题,就结合了梯度下降和高斯-牛顿法。所以如果把最小二乘看做是优化问题的话,那么梯度下降是求解方法的一种,是求解线性最小二乘的一种,高斯-牛顿法和Levenberg-Marquardt则能用于求解非线性最小二乘。具体可参考维基百科(Least squares, Gradient descent, Gauss-Newton algorithm, Levenberg-Marquardt algorithm)machine learning 的东西, 所以才会有此问题. 但正如其他人指出的, 其实两种方法并不太具有可比性. 不过我当时在学的时候也有类似的问题. 当时我的问题是, 最小二乘法的矩阵解法和梯度下降法的区别在哪里? 我估摸着其实, 在计算量方面, 两者有很大的不同, 因而在面对给定的问题时, 可以有选择性的根据问题的性质选择两种方法中的一个.具体来说, 最小二乘法的矩阵公式是 , 这里的 A 是一个矩阵, b 是一个向量. 如果有离散数据点, , 而想要拟合的方程又大致形如 可能是想问这个问题,。