红外热像仪的原理

2024-05-14

1. 红外热像仪的原理

什么是红外热像仪

自然界任何物体,只要温度高于绝对零度(-273.15 C˚),就会以电磁辐射的形式在非常宽的波长范围内发射能量,产生电磁波(辐射能)。

红外线的波长在780nm~1mm之间,按波长的范围可分为近红外、中红外、远红外,它在电磁波连续频谱中的位置是处于无线电波和可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动越剧烈,辐射的能量越大,反之,辐射的能量越小。



※红外热像法:是一种无损检测技术,是对被检测物体表面进行非接触的热测量及测成像并分析其热图谱的方法。热成像技术是利用热感应照相机的红外线成像技术,热像仪可生成热而不是光的图像,它可以测量红外(IR)能量,并将数据转换成相应的温度图像。

※热像仪工作原理:热像仪由两个基本部分组成,即光学系统和探测器。光学系统将物体发出的红外辐射聚集到探测器上,探测器把入射的辐射转换成电信号,进而被处理成可见图像,即热图,这种热图与物体表面的分布场相对应。

实际上被测目标各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,例如图像亮度、对比度的控制、实际校正、伪色彩描绘、等高线和直方进行运算等。

红外热像仪的原理

2. 红外热像仪的原理

●什么是红外热像仪

自然界任何物体,只要温度高于绝对零度(-273.15 C˚),就会以电磁辐射的形式在非常宽的波长范围内发射能量,产生电磁波(辐射能)。

红外线的波长在780nm~1mm之间,按波长的范围可分为近红外、中红外、远红外,它在电磁波连续频谱中的位置是处于无线电波和可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动越剧烈,辐射的能量越大,反之,辐射的能量越小。

红外热像仪工作原理分析

※红外热像法:是一种无损检测技术,是对被检测物体表面进行非接触的热测量及测成像并分析其热图谱的方法。热成像技术是利用热感应照相机的红外线成像技术,热像仪可生成热而不是光的图像,它可以测量红外(IR)能量,并将数据转换成相应的温度图像。

※热像仪工作原理:热像仪由两个基本部分组成,即光学系统和探测器。光学系统将物体发出的红外辐射聚集到探测器上,探测器把入射的辐射转换成电信号,进而被处理成可见图像,即热图,这种热图与物体表面的分布场相对应。

实际上被测目标各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,例如图像亮度、对比度的控制、实际校正、伪色彩描绘、等高线和直方进行运算等。

红外热像仪工作原理分析

※红外热像仪与红外测温仪区别:与仅能够捕获单点温度值的红外测温仪不同的是,热像仪可以将整个目标的温度特性形成一个平面图像,而非单个温度。

●了解被测物体

热像仪呈现了一幅来自物体表面的辐射能量热图,热图像与被测物体的表面温度以及物体的类型、组成材料、表面工作状况以及检测期间的运行条件有直接的关系。为了正确解释图像,就必须清楚了解物体的材料及组成部件的工作方式。

为了了解被测物体的运行状态,就必须认识物体内部与外表面之间的传递机理。热传递在红外热像中是个非常重要的概念,为了正确的解析一副热图像,必须熟悉热从一个物体传输到另一个物体的三个方式:热传导、热对流、热辐射。

红外热像仪工作原理分析

热传导                      热对流                 热辐射

※热传导-------将热能从一处传往另一处。通常热传导发生在固体或液体状态的物质中,且热传导仅存在能量传递而无粒子运动。

红外热像仪工作原理分析

※热对流--------由于流体运动产生的热传递。通常热对流发生在固体与液体或气体之间的相互作用,热量的流动始终是从高温流向低温。

※热辐射--------是指物体自身向外辐射热能的能力。热辐射发生在所有绝对零度以上的物体,物体辐射热能的能力从0~100%之间。

●红外热像仪的分析

当用红外热像仪观察物体时,热像仪检测到的是来自物体表面的辐射能量。而实际拍摄到的热能往往产生于内部,然后才传到物体表面。

红外热像仪工作原理分析

※定性分析和定量分析

热成像检测主要有两种类型:定性分析和定量分析。

红外热像仪工作原理分析

定性分析:拍摄优质的热图像,结合热图提供的热信息即可进行所需的情况分析=仅仅是图像。定性检测是热像分析的基本类型,在所有热成像分析检测中必须考虑定性分析。

定量分析:在通过热图获取信息的同时还需要精确的温度数据=热图+温度。

※被动式检测和主动式检测

热成像检测方法主要有两种类型:被动式检测和主动式检测。

被动式检测:主要是指有明显温差或超过环境温度的物体进行成像及分析,通常可直接进行测量。

主动式检测:对常温中或无法自然形成明显温差的物体进行检测及分析,通常通过改变被测物体或材料的温度才能进行检测

3. 红外热像仪的工作原理

红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。

红外热像仪的工作原理

4. 红外热成像仪的工作原理

红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C(0.005°F)的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。

5. 红外热成像仪原理的原理

1.什么是红外线?
在自然界中,凡是温度大于绝对零度dao(-273℃)的物体都能辐射红外线,它和可见光、紫外线、X射线、伽玛线、宇宙线和无线电波一起,构成了一个完整连续的电磁波谱。其波长在0.78μm至1000μm之间,是比红光波长长的非可见光。

红外线
2. 红外热像仪工作原理
红外热像仪是将红外热辐射转换成相应的电信号,然后经过放大和视频处理,形成可供肉眼观察的视频图像。通俗来讲,就是将不可见的红外辐射变为可见的热像图,并且能反映出目标表面的温度分布状态。

红外热像仪工作原理
3. 红外热像图Tips:
1)热像图反映的是物体表面的红外辐射分布状况,它取决于物体的发射率与温度的空间分布。
2)不同厂家的红外热像仪预设有不同的调色板,对图像颜色处理的效果也各不相同。
3)下图采用的是经典的铁红调色板,黄色代表高温区域,紫色代表低温区域。

高德智感C拍摄的红外热图

红外热成像仪原理的原理

6. 红外热像仪工作原理是都一样的吗?

红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
工作原理:
红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。

人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。
红外热像仪的构成包5大部分:
1、红外镜头: 接收和汇聚被测物体发射的红外辐射;
2、红外探测器组件: 将热辐射型号变成电信号;
3、电子组件: 对电信号进行处理;
4、显示组件: 将电信号转变成可见光图像;
5、软件: 处理采集到的温度数据,转换成温度读数和图像。

7. 红外热像仪的原理和用途是怎么回事

红外热成像技术是一种被动式、非接触的检测与识别技术,可利用目标和背景或目标各部分之间的温度差或辐射差异形成的红外辐射特征图像来发现和识别目标,其两大基础功能是测温与夜视。
测温,即能实现非接触式远距离测温和故障检测,优势是简单直观、安全精准、高效省时和全天候工作。夜视,即在完全无光的情况下可轻松探测和识别目标,优势是全天候工作、无惧恶劣天气、作用距离远和超强隐秘性。
红外热像仪的最早应用起源于军事领域,后被广泛应用于电力巡检、电气设备维护、工业自动化、检验检疫、安防监控、森林防火、消防救援、警用执法、户外运动等多个民用传统领域,以及自动驾驶、智能家居、物联网、人工智能、消费电子等多个新兴领域。

电力检测

户外夜视

红外热像仪的原理和用途是怎么回事

8. 红外热像仪工作原理是不是都一样?

红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
工作原理:
红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。

人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。
红外热像仪的构成包5大部分:
1、红外镜头: 接收和汇聚被测物体发射的红外辐射;
2、红外探测器组件: 将热辐射型号变成电信号;
3、电子组件: 对电信号进行处理;
4、显示组件: 将电信号转变成可见光图像;
5、软件: 处理采集到的温度数据,转换成温度读数和图像。
最新文章
热门文章
推荐阅读