粘性阻尼系数一般数值

2024-04-29

1. 粘性阻尼系数一般数值

动力粘度的量纲
   
 有奖励
   
 动力粘度单位:N·s/㎡(牛顿秒每米方,不是千克*秒/米2)=Pa·S(帕·秒)。
   
 动力粘度也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1㎡相距1m的两平板。
   
 以1m/s的速度作相对运动时,因之间存在的流体互相作用所产生的内摩擦力。单位为N·s/㎡(牛顿秒每米方),即Pa·s(帕秒),其量纲为M/(L·T)。
   
 系数计算:
   
 度量流体粘性大小的物理量。又称粘性系数、动力粘度,比例系数,粘性阻尼系数,记为μ。
   
 牛顿粘性定律指出,在纯剪切流动中相邻两流体层之间的剪应力(或粘性摩擦应力)为式中dv/dy为垂直流动方向的法向速度梯度。粘度数值上等于单位速度梯度下流体所受的剪应力。
   
 速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。按国际单位制,粘度的单位为帕·秒。有时也用泊或厘泊(1泊=10^(-1)帕·秒,1厘泊= 10^(-2)泊)。
   
 粘度是流体的一种属性,不同流体的粘度数值不同。同种流体的粘度显著地与温度有关,而与压强几乎无关。气体的粘度随温度升高而增大,液体则减小。

粘性阻尼系数一般数值

2. 什么是粘性阻尼力?举个例子

粘性阻尼是振动系统的运动受大小与运动速度成正比而方向相反的阻力所引起的能量损耗。粘性阻尼发生在物体内振动而产生形变的过程中。物体振动时,部分振动能量损耗在物体所处的环境的阻力中,比如说振动物体受到空气或水的阻力,并被转换为热能。在实际的振动系统中,除粘性阻尼外,还有结构阻尼(结构本身振动时其结构内部分子或原子之间的能量耗散引起的阻尼),干阻尼(例如轴承内或零件接合处的摩擦作用)等其它能量损耗。但在振动很大的情况,粘性阻尼引起的损耗占优势,这时振动振幅按时间的几何级数规律衰减。
在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性(或粘性)阻尼模型,这个力即为阻尼力。
胶水就对拉动的玻璃有阻尼作用。

3. 阻尼力的线性粘性阻尼

在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。

阻尼力的线性粘性阻尼

4. 阻尼系数的阻尼比


5. 阻尼系数的常用材料阻尼系数

 :0.01~0.06

阻尼系数的常用材料阻尼系数

6. 阻力系数和摩擦系数的联系

阻力系数和摩擦系数的联系:这两者没有直接联系,阻尼系数是物质内部本身属性,不可改变。而摩擦因素是可改变的。假如想增大摩擦力,就要选熔点低的材料,易融化,粘性相对较好,而材料元素未变化,阻尼系数也不变。
层流时圆管摩擦系数λλ=64/Re,紊流时的λ还无法从理论上推导出来,需查经验表(Moody图)或通过经验关系式计算。紊流时,随雷诺数Re的增加,λ将减小,当Re增大到某一数值后,λ基本不变。总之流体摩擦系数与介质,流态,流速有关,变化范围较大。大概是10e-1到10e-7之间。

从摩擦机理角度
摩擦系数主要是接触材料、界面粘染物或面润滑剂的一个特征,根据现代摩擦力理论,摩擦是接触表面原子之间的附着力引起的,当两物体相互接触时,首先是凸起部分表面原子相当地接近形成原子键,其强度与固体内部使自己聚集在一起的原子键的强度相当。

7. 阻尼系数的定义

阻尼系数:阻尼系数(Damping Factor)是指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数大表示功率放大器的输出电阻小,阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。具有高阻尼系数的放大器,对于扬声器更象一个短路,在信号终止时能减小其振动。 功率放大器的输出阻抗会直接影响扬声器系统的低频Q值,从而影响系统的低频特性。扬声器系统的Q值不宜过高,一般在0.5~l范围内较好,功率放大器的输出阻抗是使低频Q值上升的因素,所以一般希望功率放大器的输出阻抗小、阻尼系数大为好。阻尼系数一般在几十到几百之间,优质专业功率放大器的阻尼系数可高达200以上。一个二阶以及二阶以上的系统,在系统运动过程中系统的内在能量的消耗有两种情况:  系统能量保持不变;  系统能量逐渐减少;  阻尼系数就是表征能量减少这一特性的。阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼量越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6 。

阻尼系数的定义

8. 阻尼系数的阻尼系数匹配

 阻尼系数KD定义为KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。由于功放、输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼越重。功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放,阻尼系灵敏有一个经验值可供参考;晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。保证放音的稳态特性与瞬态特性良好的基本条件,应注意音箱的等效力学品质因素(Qm)与放大器阻尼系数(KD)的配合,这种配合需将音箱的馈线作音响系统整体的一部分来考虑。音箱馈线的功率损失小0.5dB(约12%)即可达到这种配合。一般来说,线越粗越好,最好是双线分音,但是要求音箱是有双线分音的分频器,一般中高档的都有4个接线座,上下的2个负极是独立的,不连接在一起的,连接在一起的是假冒的。 结构阻尼是对振动结构所耗散的能量的测量,通常用振动一次的能量耗散率来表示结构阻尼的强弱。典型结构体系的真实阻尼特性是很复杂和难于确定的。近几十年来,人们提出了多种阻尼理论假设,在众多的阻尼理论假设中,用得较多的是两种线性阻尼理论:粘滞阻尼理论和复阻尼理论(滞变阻尼理论)。粘滞阻尼理论可导出简单的运动方程形式,因此被广泛应用。可是它有一个严重的缺点,即每周能量损失依赖于激励频率。这种依赖关系是与大量试验结果不符的,试验结果表明阻尼力和试验频率几乎是无关的。因此,自然期望消除阻尼力对频率的依赖。这可以用称为滞变阻尼的形式代替粘滞阻尼来实现。滞变阻尼可定义为一种与速度同相而与位移成比例的阻尼力。在考虑阻尼时在弹性模量或刚度系数项前乘以复常数 即可,v为复阻尼系数。复阻尼理论对于一般的结构动力响应来说,计算过程非常复杂,因此,在动力响应分析中,复阻尼理论应用不多,本文限于篇幅,也就不再展开了。粘滞阻尼理论假定阻尼力与运动速度成正比,通常是用不同频率的阻尼比ζ来表征系统的阻尼:粘滞阻尼理论最显著的特点在于其阻尼力是直接根据与相对速度成正比的关系给出的,不论是简谐振动或是非简谐振动,都可直接写出系统的运动方程,而且均为线性微分方程,给理论分析带来了很大的方便。在多自由度系统中采用等效粘滞模态阻尼,阻尼力向量的表达式为若[C」可以通过模态向量正交化为对角矩阵时,则称为正交阻尼或比例阻尼。反之,则称之为非正交阻尼。因为无阻尼振型对质量和刚度都是正交的。所以为方便计算,通常假设振型对阻尼矩阵也是正交的。最简单的方法是使其与质量矩阵或者刚度矩阵成比例。或许这就是比例阻尼这一名称的来历。正交阻尼原则上适用于阻尼特性分布比较均匀的工程结构。但是,对于多于一种材料组成的结构,由于不同材料在结构的不同部分提供的能量损失机制差别很大,所以阻尼力的分布将与惯性力和弹性力的分布不同;换句话说,这种情况导致的阻尼将不是成比例的。Rayleigh阻尼模型是广泛采用的一种正交阻尼模型,其数学表达式如下:C=a0M+a1K (2)式中, a0和a1称为Rayleigh阻尼常数。在Rayleigh阻尼模型下,各阶阻尼比可表示为式中ζi称为第i阶振型的模态阻尼比,因此若已知任意两阶振型的阻尼比ζi和ζj,则可定出阻尼常数确定了a0和al之后,即可确定出各阶振型的模态阻尼比,并确定阻尼矩阵。阻尼选取对实际抗震分析的影响目前,桥梁地震反应分析一般以直接积分的时程分析方法为主。其阻尼模型取Rayleigh阻尼模型,并以主塔或主梁的两个较低阶振型频率ωi和ωj对应的阻尼比作为ζi和ζj,接式(3)和式(4) 求出其余各阶频率的阻尼比,并求出阻尼矩阵代入动力方程,用直接积分的方法求解动力方程。这样处理阻尼虽然非常简单,但也产生了以下两个不可忽视的问题:(1)如前所述,Rayleigh阻尼作为一种正交阻尼,适用于阻尼特性分布非常均匀的工程结构。但是大跨桥梁一般来说都不能算作非常均匀的结构。例如,为了提高桥梁的跨越能力,主梁一般采用钢箱梁或钢混叠合梁,而主塔和边墩则采用钢筋混凝土材料,两者的阻尼特性相差比较大。即使主梁材料特性与主塔差不多,大跨桥梁由于抗风和抗震的要求,经常会在桥梁结构的某些部位加有人工阻尼装置,比如桥墩上安放高阻尼的抗震支座、桥塔上安放控制振动的装置TMD等,这都会产生摩擦阻尼或集中阻尼从而造成阻尼特性的不均匀分布。这样的阻尼均匀性前提得不到满足的情况下,仍按照 Rayleigh阻尼模型去计算各阶振型对应的阻尼比势必会造成除ωi和ωj两阶之外其他各阶振型阻尼比与真实值有或多或少的差别。(2)根据同济大学土木防灾国家重点实验室对国内几十座大跨桥梁进行抗震分析后总结的经验,边墩。辅助墩等部位是大跨桥梁抗震设施的重点。但是采用Rayleigh阻尼模型时,用于计算其他各阶振型阻尼比的ωi和ωj一般取的是较低阶的振型,而边墩辅助墩的振动一般都发生在高阶振型。根据Rayleigh阻尼模型图,可以看出离ωi和ωj越远的振型,其阻尼比就越不准,而且随着图上阻尼比按频率增加的速度越来越快,边墩部分振动频率对应的阻尼比比实际值往往偏大,从这一点讲会导致边墩部分反应的计算结果偏于不安全。一些桥梁抗震研究人员已经注意到了以上两个问题,他们采取的措施是根据分析的部位不断变换所选择的ωi和ωj,比如计算桥塔的纵向地震反应时就选择对桥塔的纵向反应起主要作用的两阶频率作为ωi和ωj,来计算其它各阶阻尼比,计算其它地震反应时也依此类推。这样就需要分析人员不断的重复选择。和约和进行时程计算,十分繁琐。 由以上论述,我们已经了解到阻尼是一个非常复杂的问题,仅仅依靠Rayleigh阻尼模型,会对大跨桥梁尤其是边墩辅助墩等部位的地震反应分析出现不应有的误差。因此,我们尝试寻找一种既不过分繁琐又比较准确的方法。在前面的论述中,我们发现阻尼比是反应阻尼的一个方便而有效的量,它把阻尼特性和振型频率联系起来,使得动力方程分析起来更为简单,而且阻尼比可以通过桥梁实测测出。如果我们直接指定对桥塔。主梁、边墩等重要部位反应起主要作用的一些振型频率的阻尼比,而对其余各阶振型频率的阻尼比采用线性内插的方法确定,这样做也可以形成阻尼比矩阵。由于我们通过以前的工程实例发现结构各部位的反应来说少数几阶振型的贡献最为显著(这些振型的贡献占到70%~ 80%,甚至更多),因此,这样做能够保证计算的正确性,而且并不繁琐,此对,以实测试验数据作为基础,更增加了其准确性。同济大学桥梁系近十几年来,通过为国内几十座大型桥梁进行竣工检测、成桥检测积累了大量的阻尼实测资料,并有研究人员准备把这些阻尼资料整理形成桥梁阻尼数据库。有了这些数据资料为基础,通过指定主要振型频率阻尼比,来计算结构动力反应是行得通的,并且结合下面的振型叠加法,会使计算更加简便。